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Physical Mechanisms of Fast-Ion Loss! E.M. CAROLI-
PIO, W.W. HEIDBRINK, University of California, Irvine, R. WHITE,
Princeton University — Theoretical analysis and simulations with a
Hamiltonian guiding center code are used to understand fast-ion trans-
port in several experiments. In one study, the stationary magnetic is-
lands produced by large tearing modes reduce the neutral beam current
drive efficiency and 2.5 MeV neutron emission by as much as 65%.2
The losses are caused by intrinsic orbit stochasticity. In another study,
the confinement of 1 MeV tritons is usually unaffected by externally-
imposed helical fields, apparently because the rotating plasma reduces
the amplitude of the perturbed field. In a third study, the measured
magnetic fluctuations are too small to explain beam-ion losses during
TAE activity; we speculate that parallel electric fields play a role in the
observed transport.
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This poster contains three separate studies of the
effect of helical fields on energetic-ion confinement
in the DIII-D tokamak:

1. Simulations of Beam lon Transport
during Tearing Modes

by E.M. Carolipio, W.W. Heidbrink, C.B. Forest, R.B. White
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mposed, Helical Fields on Fusio
Froduct Confinement

. R E R [l - Lt TV Pt X
A = R R S S o A S e NI e e P A Y ~ it
Al SE NS S UV walon iU Thad o ;OA:{‘: . L. OCoVHIE
- v - o o
© £ f Pan i o e e En ek ames, e { E
v e H R g, [ A S B o L
e RS - B e [ H
s o’ Sk i < S G P [—
S, ‘g
o g B W W J«ag N o SN S £ s N T
N Rt N - LT A=
$rar e Tentl o B e 3t S Shvac t et W Gouros e
2
oot T L e N S i Wt o~
Y S ol :%‘-.*f 3 [ T I
o o™ G E H R - - [ S A
F— o AP § ~ N NN
- Tty L \ e ’ S Vet Ve L]
- alGHoio, v vy = Coenentg, RRUIALY
P — YO VA e
e 3 i "y - -~ el e Sy ad ey
LY il A NG LT N S T AR A T
e

The studies were performed by E.M. Carolipio for
his Ph.D. thesis. Each paper is being submitted
for publication as a separate journal article.



Effect of Large Tearing Modes
on Beam lons

® In low density, high Bp plasmas (Fig. 1),
large tearing modes are measured (Fig. 2).

® Reductions in the neutron rate (Fig. 1)
and driven current (Fig. 3) indicate degraded
beam-ion confinement.

® Mynick's analytic theory:

Resonances between n=0 orbit shifts (grad B
and curvature drifts) and helical orbit
perturbations cause islands in the particle's
phase space. Intrinsic orbit stochasticity
occurs when the drift islands overlap.

® Stochasticity is predicted in this discharge
for circulating beam ions.

® Numerical studies are performed with
White's ORBIT code (Fig. 4).

® The perturbation reduces the neutron rate
and current drive (Fig. 5). The calculated losses
agree with experiment (Fig. 6).



® The calculated losses are of high energy,
circulating beam ions (Fig. 7) and scale as

(6 B)2, as expected for intrinsic orbit
stochasticity.
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FIG. 4. Poincaré maps for (a) the magnetic field and (b) alphas with
energy E=1.75 MeV, and A=1, for a (2,1) mode with a,,,=10"*,
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FIG. 5. Same plots as for Fig. 4, but with a,,,=3X10"*.
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Figure 1. Comparison of two discharges: one
with a large tearing mode and one without. The
neutron rate is lower than classically predicted
in the discharge with a large m/n = 2/1 tearing
mode.
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Figure 2. ECE data showing a large tearing
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Figure 3. In the center of the plasma, the neu-
tral beams drive much less current than clas-
sically expected in the discharge with a large
tearing mode.




Fast Ion‘ Transport"S'imuIatIOns Uslng the Hamiltonian G.C. Code ORBIT
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Figure 4. Flow diagram for Monte Carlo sim-

ulations with the ORBIT code.
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Figure 5. Inclusion of a large m/n = 2/1
island in the simulations reduces the predicted
neutral beam current drive and neutron rate.
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Figure 7. The calculated losses are of (a)
strongly circulating, (b) high energy beam ions.
The losses accumulate steadily (c). Intrinsic or-
bit stochasticity theory is qualitatively consis-
tent with these numerical results.
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ct of Extarnal Helical Fields
on Fusion Products

® Use the burnup of 1 MeV tritons to monitor
fusion product confinement. Use external
coils to produce helical fields (Fig. 1).

® The vacuum perturbations are ~ 10 G.
Helicities that resonate with a rational q surface
and non-resonant helicities are both tried

(Fig. 2).

® The burnup in discharges with a helical
field is compared to discharges with no field
(Fig. 3). To within 15% uncertainty, no effect
on the triton burnup is observed (Fig. 4).

® Tearing modes have a larger impact on
the triton burnup (Fig. 5).

® Larger helical fields cause disruptions
==> stationary helical fields cannot be used
to control alpha ash.



C-coll sections

Figure 1. Illustration of the coil sets used to
produce n = 1 and n = 3 helical perturbations.
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Figure 2. Examples of the field perturbations
produced by the coils. The solid symbols rep-
resent helicities that resonate with a rational ¢
surface in the plasma.
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Figure 3. Typical data. In this case, the C-
coil produces the helical perturbation. The ra-
tio of the 14-MeV neutron fluence to the 2.5-
MeV neutron fluence monitors the confinement
of the triton fusion product. As expected classi-
cally, the tritons take ~ 0.2 s to reach the peak
of the d(t,n) cross section.
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Figure 4. On average, the external helical
fields have no impact on the triton confinement.
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Figure 5. A discharge with anomalous triton
burnup. The n = 1 coil produces the external
helical field in this case. The onset of a large,
rotating m/n = 2/1 tearing mode has a much
larger effect on the triton burnup.




TAE Mode =*ructure

® Use three codes to calculate the TAE
eigenfunction (Fig. 1).

® The ideal MHD eigenfunction disagrees
with the soft x-ray data (Fig. 2); the gyro-
kinetic eigenfunction is better (Fig. 3).

® Measurements indicate ~7% of the beam
ions are lost at each TAE burst (Fig. 4).

® Use White's ORBIT code to see if the

theoretical eigenfunctions can explain the
measured losses. The ideal MHD eigen-
function is inconsistent with the data (Fig. 5).

® Finite E|| may be necessary to explain
the observations.
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Figure 1. TAE eigenfunctions calculated by
three different codes for the same discharge. (a)
Ideal MHD code NOVA-K. (b) Oak Ridge gy-
rofluid code. (c,d) PENN gyrokinetic code.
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Figure 2. Comparison of the measured soft
x-ray fluctuations (x) with the fluctuations cal-

culated from the NOVA-K eigenfunction (A).
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Figure 3. Comparison of the measured soft
x-ray fluctuations (x) with the fluctuations cal-
culated from the PENN eigenfunction (A).
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Figure 4. Data from a TAE burst. (a) Fil-
tered Mirnov coil signal. (b) Beam-ion loss rate
inferred from the neutron rate.
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Figure 5. Results of ORBIT simulations us-
ing the NOVA-K eigenfunction. The simulated
losses are much smaller than the measured losses
at the experimental amplitude.
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Conclusions

® Intrinsic orbit stochasticity is responsible
for the observed beam-ion transport. Both
analytic theory and numerical simulations
agree quantitatively with experiment.

® Stationary helical perturbations with
oB/B ~ 10-3 cause no degradation in fusion
product confinement. Rotating helical
fields must be used for alpha ash control.



