

Overview of Physics Results from the 1999 DIII–D Campaign by S. L. Allen

and the DIII–D Team

Presented at the American Physical Society Division of Plasma Physics Meeting Seattle, Washington

November 15-19, 1999

Overview of Physics Results from the 1999 DIII–D Campaign by

S. L. Allen and the DIII–D Team

Presented at the American Physical Society Division of Plasma Physics Meeting Seattle, Washington

ornl

November 15–19, 1999

Our goal is a sustained Advanced Tokamak

Plasma control techniques are necessary

We focused on physics principles in the 1999 Campaign

1999

Wall Stabilization Physics

1999

Wall Stabilization Physics

Neoclassical Tearing Mode (NTM) physics

1999

Wall Stabilization Physics

Neoclassical Tearing Mode (NTM) physics

Advanced Tokamak Scenario Development

1999

Wall Stabilization Physics

Neoclassical Tearing Mode (NTM) physics

Advanced Tokamak Scenario Development

Internal Transport Barrier (ITB) Control

Counter Neutral Beam Injection

1999

Wall Stabilization Physics

Neoclassical Tearing Mode (NTM) physics

Advanced Tokamak Scenario Development

Internal Transport Barrier (ITB) Control

Counter Neutral Beam Injection

Tools for edge stability

1999

Wall Stabilization Physics

Neoclassical Tearing Mode (NTM) physics

Advanced Tokamak Scenario Development

Internal Transport Barrier (ITB) Control

Counter Neutral Beam Injection

Tools for edge stability

Optimal plasma shape, divertor

AT modes were limited by Resistive Wall Modes

1999

Wall Stabilization Physics

Neoclassical Tearing Mode (NTM) physics

Advanced Tokamak Scenario Development

AT Discharge Affected by Resistive Wall Mode

- Ip=1.2 MA, Bt=1.6 T
 q_{min} ~1.7, q₉₅~5.5
- β_N limited to about 4li (no wall limit) by bursty RWM

Discharge tuning results in long duration AT Mode

AT Performance vs. Duration

AT Performance vs. Duration *Increased in 1999*

Preliminary RWM Feedback Experiments Show

Preliminary RWM Feedback Experiments Show Extended Duration

Research in Neoclassical Tearing Modes

1999

Wall Stabilization Physics

Neoclassical Tearing Mode (NTM) physics

Advanced Tokamak Scenario Development

NTM Critical $\beta_{\mbox{N}}$ power law scaling

 $\beta_{NC} \propto \rho_{i^*}^{X} (v_i / \epsilon \omega_{e^*})^{y}$

NTM Critical β_N power law scaling is complicated!

 $\beta_{NC} \propto \rho_{i^*}^{X} (v_i / \epsilon \omega_{e^*})^{y}$

New tools for ITB control, including counter NBI

1999

Wall Stabilization Physics

Neoclassical Tearing Mode (NTM) physics

Advanced Tokamak Scenario Development

Internal Transport Barrier (ITB) Control

Counter Neutral Beam Injection

Tools for edge stability

Tools for ITB control: Counter NBI and ECH Preheat

 Routine counter NBI injection achieved (previously not routine on DIII–D)

Tools for ITB control: Counter NBI and ECH Preheat

- Routine counter NBI injection achieved (previously not routine on DIII–D)
- ECH Preheat controls q-profile

 --Counter NBI less NCS
 --ECH + Counter NBI better profile

Tools for ITB control: Counter NBI and ECH Preheat

- Routine counter NBI injection achieved (previously not routine on DIII–D)
- ECH Preheat controls q-profile
 --Counter NBI less NCS
 --ECH + Counter NBI better profile

Differences Compared to CO-ITB:

- -- ITB formed, but required more NBI power
- --Broader barriers, with less steep gradients
- --Sustainment work in 2000

Tools for ITB control: Flexible Pellet

Tools for ITB control: Flexible Pellet Injection

Tools for ITB control: Impurity Injection

Tools for ITB control: Impurity Injection

Tools for ITB control: Impurity Injection

We explored the affects of shape on Confinement

1999

Wall Stabilization Physics

Neoclassical Tearing Mode (NTM) physics

Advanced Tokamak Scenario Development

Internal Transport Barrier (ITB) Control

Counter Neutral Beam Injection

Tools for edge stability

Optimal plasma shape, divertor

Plasma shape studies included variation from LSN to USN

Plasma shape studies included variation from LSN to USN

Plasma shape studies included variation from LSN to USN

Experiments in the "Topical Science Areas" -- Pedestal Physics

• Confinement and Transport, Heating & Current Drive, Stability, Divertor

Operation above the Greenwald Density

Pedestal Physics

Drifts near the x-point are important for confinement

New capabilities in 2000 -- ECH Power

NATIONAL FUSION FACILITY SAN DIEGO

3 GYCOM Gyrotrons --2 s pulse length

--includes 2 from TdeV

New capabilities in 2000 -- ECH Power

- 3 GYCOM Gyrotrons --2 s pulse length --includes 2 from TdeV
- 3 CPI Gyrotrons --2 Long Pulse with Diamond Window
- New Steerable Launcher

New capabilities in 2000 -- ECH Power and Divertor Pumping

SAN DIEGO

- 3 GYCOM Gyrotrons --2 s pulse length
 - --includes 2 from TdeV
- 3 CPI Gyrotrons --2 Long Pulse with Diamond Window
- New Steerable Launcher

New capabilities in 2000 -- ECH Power and Divertor Pumping

NATIONAL FUSION FACILITY SAN DIEGO

- 3 GYCOM Gyrotrons
 - --2 s pulse length
 - --includes 2 from TdeV
- 3 CPI Gyrotrons --2 Long Pulse with Diamond Window
- New Steerable Launcher

• New upper divertor:

New capabilities in 2000 -- ECH Power and Divertor Pumping

DATIONAL FUSION FACILITY SAN DIEGO

- 3 GYCOM Gyrotrons --2 s pulse length
 - --includes 2 from TdeV
- 3 CPI Gyrotrons --2 Long Pulse with Diamond Window
- New Steerable Launcher

Inner Cryopump

- New upper divertor: --Cryopump
 - --Baffle in Private Flux Region

2000 DAC Allon

Overview of DIII-D Presentations TODAY

- Monday (it's over)
 - -- C. Greenfield Invited Talk on Transport
 - -- G. Mc Kee Invited Talk on Transport
 - -- Poster session on Transport
- Tuesday

--This oral session (You're here, so stay)

Overview of DIII-D Presentations WEDNESDAY

- Monday (it's over)
 - -- C. Greenfield Invited Talk on Transport
 - -- G. Mc Kee Invited Talk on Transport
 - -- Poster session on Transport
- Tuesday
 --This oral session (You're here, so stay)
- Wednesday
 - --Poster Session on DIII-D Divertor, Wave Particle, and Diagnostics

- Monday (it's over)
 - -- C. Greenfield Invited Talk on Transport
 - -- G. Mc Kee Invited Talk on Transport
 - -- Poster session on Transport
- Tuesday
 --This oral session (You're here, so stay)
- Wednesday
 - --Poster Session on DIII-D Divertor, Wave Particle, and Diagnostics
- Friday
 - --J. Ferron Invited Talk on H-mode pedestal instabilities
 - --L. Baylor Invited Talk on Pellet Injection