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BACKGROUND

e ELMsfirst observed in ASDEX H Mode (F. Wagner, et al., Phys. Rev.
Lett., 49, 1408, 1982)

® Several explanations have been proposed:

— Unstable low n Ideal MHD peeling modes
» driven by the Pfirsch Schluter current from the steep p'edge IN
H Mode (A.D. Turnbull et al., J. Comp. Phys., 66, 391, 1986)

» B threshold for instability arises from large p'edge

— High n ideal MHD ballooning modes (P. Gohil et al, Phys. Rev. Lett.,
61, 1603, (1988)
» Onset of ELMs correlated with p'edge eaching the simple
circular cross section estimate for the ballooning limit

— Low n Ideal MHD peeling modes driven by edge current density
gradients (J. Manickam Phys. Fluids B4, 1901, 1992)

None of the explanations has held up to detailed scrutiny
This work presents a more complete model for ELMs
ELMs result from a complex interaction between ballooning and low n

kink peeling mode stability with the latter driven partly by the
edge p' and partly by the bootstrap current density
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HIGH PERFORMANCE VH MODE AND NCS
H MODE DISCHARGES ARE TERMINATED BY
A LARGE ELM

® Termination has been identified as a low to intermediate n MHD
peeling mode (E.J. Strait, et al., EPS 1993, Vol. 1, p211, 1994)

High performance termination by Calculations predict edge n=2,3,4
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VH MODE TERMINATION EVENT IS DRIVEN
BY COMBINATION OF jege and p'ege

I nstability threshold for p'edge
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PREVIOUS ATTEMPTS FAILED TO IDENTIFY
ORDINARY TYPE | ELMS IN ELMING H MODE
AS LOW n MHD INSTABILITIES

® Equilibria reconstructed for Discharge #72047 at 2688 msec

— GATO calculations predicted stability for n = 1 through 5
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PREVIOUS CALCULATIONS FOR ELMING
DISCHARGES COULD NOT ADEQUATELY
RESOLVE THE EDGE CURRENT PROFILE

® Equilibrium diagnostics available were:
— Thomson and CER [0 pressure profile
— Magnetics [1 plasma boundary

— Single MSE channel [0 current profile
[1  Simple polynomial fitsto p' and f = rB; yielded smooth
profiles with reasonable x2

10.0

Safety Factor and Pressure
profiles

(Discharge #72047.2688)
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IMPROVED EQUILIBRIUM
RECONSTRUCTIONS ALLOW ELMS TO BE
IDENTIFIED AS LOW n KINK MODES IN DlIII-
D

e Threecritical Iimprovementsover previous attempts:

— Improved diagnostics:
» 36 MSE channels
» upgraded magnetics

— Iimproved fitting of the edge pressure:
» hyperbolic tangent fit or
» spline fit with appropriate knots near the edge

— constraint that jedge be consistent with ballooning stability
[1 require consistency between edge bootstrap current and
p|edge
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NEW 36 CHANNEL MSE DIAGNOSTIC
PROVIDES DETAILED INTERNAL CURRENT
PROFILE INFORMATION

® Multiple viewing angles allow resolution of Er and Bz:
— Internal j is well resolved
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MORE REALISTIC EQUILIBRIUM
RECONSTRUCTION PROCEDURE FOR EDGE
PRESSURE AND CURRENT IS CRUCIAL

® Accurate fit to H mode edge pressure I large edge gradient

[ Strong variation in p' near edge needs to be accurately
reproduced

® Large p'edge With simplest fit using magnetics data only
[1 edge predicted to be unstable to ballooning modes
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ADDITIONAL CONSTRAINT REQUIRING
BOOTSTRAP ALIGNMENT IS NECESSARY TO
RESTORE CONSISTENCY WITH BALLOONING

® Edge] profile is still ambiguous since the edge MSE system
cannot resolve Er and Bz sufficiently:
[J A significant variation in jeqge IS Still consistent with the
MSE and magnetics data
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PLASMA IS PREDICTED UNSTABLE TO LOW
n KINK - PEELING MODE BEFORE TYPE |
ELM FOR DISCHARGE #92001

® Equilibrium and low n (n = 1 through 5) stability analysis
performed at 1693 msec and 2075 msec
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PROFILES FOR DISCHARGE #92001 SHOW A
LARGE P'edge IN ELM FREE PERIOD AND JUST
BEFORE THE ELM

* ELM Free Period ® Just before ELM
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STABILITY CALCULATIONS INCORPORATE
ESSENTIAL DETAILS OF CURRENT PROFILE
AND THE PLASMA AND WALL SHAPE

® Realistic DIII-D wall. ® Mesh packing used to

— Plasma boundary set within resolve the edge
104 of separatrix aona
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STABILITY CALCULATIONS FOR n=1 AND
n=2 SHOW COMPLETE STABILITY

® Best fit to equilibrium data at 1693 msec yields go = 1.02 + 0.1
— Unstable to n = 1 quasi-interchange mode
» increasing o to 1.05 0 stable to n = 1 with or without wall

— Stable ton =2 with or without a wall

® Best fit to equilibrium data at 2075 msec yields qo = 1.13 + 0.1
— Stable ton = 1 with or without a wall

— Stable ton =2 with or without a wall
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UNSTABLE IDEAL n=3 MODE JUST BEFORE
TYPE | ELM IS A KINK-PEELING MODE

®* Mode displacement ° Fourier decomposition
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UNSTABLE IDEAL n=4 AND n=5 MODES ARE
ALSO KINK-PEELING MODES

® Mode displacement ® Fourier decomposition
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MESH CONVERGENCE STUDIES SHOW
COMPUTED n=3,4, AND 5 UNSTABLE MODES
ARE WELL RESOLVED

® Convergence from stable side typical for unstable peeling modes

— marginally unstable n=2 mode at extremely high resolution
» sensitive to small variations in equilibrium => can be ignored

® Mesh Convergence
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RESULTS ARE CONSISTENT WITH
INTERPRETATION OF VH TERMINATION
EVENT AS A LARGE BROAD ELM

®* VH Mode termination and Type | ELM instabilities are both low

to intermediate n 'peeling’ modes with considerable 'ballooning
mode' structure

[J partly pressure driven and partly current driven

* VH Mode termination is similar but is lower n and has a broader
radial extent

[ more dangerous
[1 leads to irreversible collapse of high performance phase
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ELM IS MORE RADIALLY LOCALIZED THAN
VH MODE TERMINATION INSTABILITY

®* VH Termination: ° ELM:
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CAUTIONARY REMARKS

® Ordinary Type | ELM instability is not always found from
calculations:

— stability depends sensitively on jedge

— requirement of 'reasonable’ alignment of jgsand jedge in Order to
impose consistency with ballooning stability does not fully
COnStI‘aIn jedge

»  Jedge depends on the fraction of the full collisionless bootstrap
current jgs that is used

» |s IS reduced by collisional effects

»  full alignment of jgsand jedge may not always be realized in
individual discharges

e Some recent high performance NCS discharges, however, have

steep VH-Mode like edge pressure gradients but the ELMs behave
more like standard Type | ELMs:

— First ELM does not terminate high performance

— Stability calculations find no low n modes (n = 1,2,3, and 4)
unstable

[1 Shape isimportant: See posters by Lao and Rice and talks
by Osborne and Ferron
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SUMMARY

®* |dentification of Type | ELMs in standard ELMing H Mode
discharges requires careful equilibrium reconstruction:

— Internal current profile measurements
— Accurate representation of edge pressure profile

— Consistency between reconstructed profiles and observed
ballooning mode stability ([0 jedge ~ ] bootstrap)

® Calculations are consistent with the view that the VH Mode

termination event isa large ELM at lower n and not as radially
localized as the standard Type | ELM

® The results suggest the following model:

ELMs result from a complex interaction between ballooning and
low n kink peeling mode stability:

— Dballooning stability determines p'edge
» If first regime limited [1 high n mode????
» If second regime access [1 low or intermediate n mode????

— low or intermediate n mode is driven partly by the edge p' and
partly by the bootstrap current density
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