Abstract Submitted for the DPP98 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (theoretical)

DIII-D Experimental Comparisons with Two-Fluid **Drift Braginskii Simulations**¹ D.M. THOMAS, R.J. GROEBNER, T.N. CARLSTROM, T.H. OSBORNE, K.H. BURRELL, General Atomics — In our DIII-D H-mode studies a key question is: What are the conditions or control parameters needed to begin the formation of the $E_{\rm r}$ shear layer and trigger the L to H transition? Two candidates which appear to correlate with the transition are the magnetic/diamagnetic 'alpha' parameters $\alpha_{\rm mhd}$ and $\alpha_{\rm dia}$ derived from 3-D flux-tube numerical simulations of the electromagnetic Braginskii equations. Since edge transport barrier physics is dominated by local, rather than global, variables, we have developed a routine to evaluate $\alpha_{\rm mhd}$ and $\alpha_{\rm dia}$ based on local values of the relevant input parameters for any DIII-D timeslice. The experimental values of $\alpha_{\rm mhd}$ and $\alpha_{\rm dia}$ are comparable to those expected from the model However, the dynamical evolution of the α 's during the L to H transitions for oscillating L↔H DIII–D discharges (no particular increase in $\alpha_{\rm mhd}$ prior to the transition and a relatively low $\alpha_{\rm dia}$ at the transition) appears to be inconsistent with the model predictions. Comparisons for various other DIII-D conditions will be presented along with implications for further theory/experiment improvements.

¹Work supported by U.S. DOE under Contract DE-AC03-89ER51114.

	Thomas
X Prefer Poster Session	
C:-1:	1: - 4 - 1
Special instructions: DIII–D Poster Session I (transport, turbulence, & stability), imm following Carolipio	iediately
ware-fre	

Date submitted: July 22, 1998 Electronic form version 1.3