Abstract Submitted for the DPP98 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (experimental)

Evidence for Correlations in DIH–**D Te Fluctuation Data**¹ P.A. POLITZER, General Atomics — Electron temperature fluctuations are a rich source of information on turbulence in both quiescent and strongly driven tokamak plasmas. Fast electron cyclotron emission (ECE) data from a range of DIH–D discharges has been studied for evidence of long-time correlations and of self-organized criticality. The rescaled adjusted range statistics (R/S) method used by Carreras *et al.*² provides evidence that, even in very quiet DIH–D plasmas, the Hurst parameter significantly exceeds the value for random statistics across the entire profile. Cross-correlation analysis applied to different spatial channels of the DIH–D ECE system indicate that low-order rational surfaces affect the radial extent of the correlations. Also, the method of biorthogonal decomposition³ is shown to provide a useful tool for extracting significant information from very noisy signals.

¹Supported by U.S. DOE Contract DE-AC03-89ER51114.
²B.A. Carreras *et al.*, Phys. Rev. Lett. **80** (1998) 4438.
³T. Dudok de Wit *et al.*, Phys. Plasmas **1** (1994) 3288.

Prefer Oral Session Prefer Poster Session P.A. Politzer politzer@gav.gat.com General Atomics

Special instructions: DIII–D Poster Session I (transport, turbulence, & stability), immediately following Bravenec

Date submitted: July 22, 1998

Electronic form version 1.3