Kinetic Studies of Field-Reversed Configuration1 Y.A. OMELCHENKO, General Atomics — A Particle-in-Cell (PIC) model in cylindrical coordinates is applied to study the tilt instability of the Field-Reversed Configuration (FRC). Kinetic FRC equilibria are generated by running a 3-D, parallel code, FLAME (fluid electrons/particle ions) in axisymmetric mode. These are characterized by a range of values of parameter s (the approximate ratio of the FRC separatrix radius to the average Larmor radius) and exhibit different toroidal behaviors. This PIC model is applicable to both low-s and high-s plasmas and can predict the nonlinear FRC evolution in current and future experiments. The tilt mode (an axial displacement of the plasma with an azimuthal mode number $m = 1$) is studied by running FLAME in three dimensions (axisymmetric configurations being used as input). Tilting is clearly observed at large s. Hybrid FRC/Ion Ring configurations are also investigated in 2-D and 3-D. Their stability properties are shown to improve due to the presence of a fraction of axis-encircling (ring) ions.

1Work supported by U.S. DOE under Contracts DE-AC03-89ER51114 and DE-AC02-76CH03073.