Abstract Submitted for the DPP98 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (experimental)

Evidence for Self-organized Criticality in Tokamak Plasma Transport¹ R.A. MOYER, R. LEHMER, University of California, San Diego, T.H. RHODES, E.J. DOYLE, W.A. PEEBLES, C.L. RETTIG, University of California, Los Angeles, R.J. GROEBNER, General Atomics — Measurements of turbulence spectra and particle flux probability distributions from the DIII–D tokamak exhibit significant agreement with predictions of self organized criticality (SOC) theories. Power spectra of density \tilde{n} , floating potential, and particle flux Γ have three regions of frequency dependence: low frequency f^0 , intermediate frequency f^{-1} , and high frequency f^{-4} , consistent with power spectra observed in SOC modeling of various systems. The particle flux probability distribution function $P(\Gamma)$ for radially outgoing flux shows a Γ^{-1} dependent region extending over two decades of Γ , a clear indication of self organized behavior. Radially inward flux, representing toppling events up the density gradient (which are outside the scope of the models), also displays a Γ^{-1} dependent region. These measurements indicate that the plasma is in a state consistent with self organized criticality, and place a significant constraint on plasma transport models.

¹Supported by U.S. DOE Grants DE-FG03-95ER54294, DE-FG0386-ER53225, DE-FG03-86ER-53266, and Contract DE-AC03-89ER51114.

X

Prefer Oral Session Prefer Poster Session Richard Moyer rmoyer@ucsd.edu University of California, San Diego

Special instructions: DIII-D Oral Session I, immediately following DeBoo

Date submitted: July 16, 1998

Electronic form version 1.3