Characterization of Edge Current Density, Pressure Gradient, and Instabilities Using the Improved MSE System and a Radial Sweeping Technique1 L.L. LAO, J.R. FERRON, V.S. CHAN, R.J. GROEBNER, R.J. LA HAYE, R.L. MILLER, T.H. OSBORNE, E.J. STRAIT, A.D. TURNBULL, T.S. TAYLOR, General Atomics, B.W. RICE, Lawrence Livermore National Laboratory — Edge instabilities with moderate toroidal mode numbers $n = 2$–5 typically terminate the ELM-free phase of DIII–D high performance discharges with a fast growth time $\gamma^{-1} \approx 20$–150 μs. These moderate n magnetic precursors were also observed, although less frequently, in the ELMing phase. Ideal stability calculations of the experimental equilibria are consistent with many observed features of the instabilities and indicate a complex interaction between edge current density J_{edge} and pressure gradient P'_{edge} which drive ballooning/kink/peeling modes at moderate n. As these instabilities are sensitive to P'_{edge} and J_{edge}, for a more definite comparison with theory, new experiments were performed using the improved 35-channel MSE system and a radial sweeping technique to better characterize both the plasma edge gradients and the instabilities.

1Work supported by U.S. DOE Contracts DE-AC03-89ER51114, and W-7405-ENG-48.