Reconstruction of 2-D Profiles of CIV Vacuum Ultraviolet Emission from Tangential Images of the Divertor in DIII–D

M. DONALIES, N.W. JALUFKA, Hampton University, M.E. FENSTERMACHER, W. MEYER, D.G NILSON, R.D. WOOD, Lawrence Livermore National Lab — This paper presents the technique used to generate 2D profiles of 155 nm emission from CIV in the DIII–D divertor. First, 3-D images are recorded by a new tangentially viewing TV which images the CIV 155 nm line. Reconstruction of the 2-D profiles is carried out using general 3-D tomographic inversion software. Each pixel is treated as a chordal measurement with the imaging geometry taken into account by a transformation matrix assuming toroidal symmetry. Least squares regression is used to obtain the 2-D profile without inverting the geometry matrix. A calibration constant for the 2D reconstruction data is obtained by integrating the calculated profile along the vertical line of sight of a VUV SPRED spectrometer and normalizing to the absolute calibrated SPRED measurement at 155 nm. Sweeping of the X-point allows the SPRED to view vertically chords at several radial positions. Examples of the 3-D image data, the reconstructed 2-D profiles and calibration comparisons will be shown for several divertor plasma conditions.

1Work Supported by U.S. DOE Grant DE-FG02-97ER54451 and Contracts W-7405-ENG-48, and DE-AC03-89ER51114.

N.W. Jalufka
jalufka@fusion.hamptonu.edu
Hampton University

Special instructions: DIII–D Poster Session II (divertor physics, disruptions, RF, & diagnostics), immediately following Jalufka