Abstract Submitted
for the DPP98 Meeting of
The American Physical Society

Sorting Category: 5.1.1.2 (experimental)

Effect of the Ion Grad B Drift Direction on the Edge Plasma, Divertor, and H–mode Power Threshold in DIII–D

T.N. CARLSTROM, R.J. GROEBNER, D.M. THOMAS, General Atomics, R.J. COLCHIN, R. MAINGI, Oak Ridge National Laboratory, M.E. FENSTERMACHER, Lawrence Livermore National Laboratory, R.A. MOYER, University of California, San Diego, J.G. WATKINS, Sandia National Laboratories — Significantly different local conditions near the x-point are measured for otherwise similar global plasma parameters when comparing low power, L–mode plasmas, where the only operational difference is the direction of the toroidal field. For equal input powers, the edge plasma n_e and T_e and their gradients are roughly the same for the two cases. However, the divertor conditions are very different. When the ion ∇B drift is toward the x-point (low power threshold) the divertor recycling level and density are high and T_e near the x-point is low. These characteristic reverse when the ion ∇B drift is away from the x-point. The influence of these and other measurements on models for the L–H transition are examined. Models for the L–H transition are examined.

1Work supported by U.S. DOE under Contracts DE-AC03-89ER51114, DE-AC05-96OR22464, W-7405-ENG-48, and DE-AC04-94AL85000, and Grant DE-FG03-86ER-53266.

Preferred Session:

☐ Prefer Oral Session
☒ Prefer Poster Session

Special instructions: DIII–D Poster Session I (transport, turbulence, & stability), immediately following Thomas

Date submitted: July 22, 1998

Electronic form version 1.3