Abstract Submitted
for the DPP98 Meeting of
The American Physical Society

Sorting Category: 5.1.1.2 (experimental)

Long Pulse Discharges with Regions of Reduced Core Transport

K.H. BURRELL, E.J. SYNAKOWSKI, E.J. DOYLE, R.J. FONCK, P. GOHIL, C.M. GREENFIELD, G.R. MCKEE, P.A. POLITZER, C.L. RETTIG, B.W. RICE, T.L. RHODES, B.W. STALLARD, DIII-D National Tokamak Program — Plasmas with regions of reduced core transport are a key component of the Advanced Tokamak approach to a more attractive fusion reactor. Such plasmas have been produced in most of the world’s tokamaks using transient techniques. Although steady-state techniques are being developed, a near-term demonstration that reduced transport can be achieved for long pulses is important to provide credibility for the advanced tokamak approach. We demonstrated this in shots with both L-mode and H-mode edges. The discharges with reduced core transport have durations of $\tau_E > 20$ and, in ELMing H-mode, normalized performance parameters of $\beta_N H_{SOP} \geq 6$ for this period. The duration of the reduced core transport phase appears to be limited only by the external hardware constraints.

1Work supported by U.S. DOE Contracts DE-AC03-89ER51114, DE-AC02-76CH03073, W-7405-ENG-48, and DE-AC04-94AL85000, and Grants DE-FG03-86ER-53266 and DE-FG02-92ER54139.

K.H. Burrell
burrell@gav.gat.com
General Atomics

Prefer Oral Session

Special instructions: DIII-D Oral Session I, immediately following Rice

Date submitted: July 16, 1998