Abstract for an Invited Paper for the DPP97 Meeting of The American Physical Society

Theory and Simulation of Rotational Shear Stabilization of Turbulence¹ R.E. WALTZ, General Atomics

Stabilization of turbulence in tokamaks by E×B rotational shear is now thought to be a key mechanism leading to both L/Hedge and core transport barriers. Numerical simulations of ion temperature gradient (ITG) mode transport with gyrofluid flux tude codes first lead to the approximate rule that the critical E×B rotational shear rate $\gamma_{\rm E} = r/q \partial (q v_{\rm E\timesB}/r)/\partial r \approx$ $\gamma_{\rm max}$ the maximum of ballooning mode growth rates γ_0 in the absence of the E×B shear.² The present work revisits the $(\rho^* \to 0)$ flux tube simulations reformulated terms in of Floquet ballooning modes which convect in the ballooning mode angle $\theta_0 \to \theta_0 + \gamma_{\rm E}/\hat{\rm s}t$. This formulation avoids linearly unstable and spurious "box modes" which arise from discretizing in θ_0 and illustrates the true nonlinear nature of the stabilization in toroidal geometry. The eigenmodes can be linearly stable³ at vanishingly small $\gamma_{\rm E}$ when θ_0 -averaged $\gamma_0(\theta_0) \leq 0$, yet Floquet mode convective amplification with nonlinear coupling allows turbulence to persists unless $\gamma_{\rm E} \approx \gamma_{\rm max}$. The rule seems to hold at vanishing magnetic shear $\hat{\rm s}$. Going to finite ρ^* with diamagnetic velocities comparable to $v_{\rm E\times B}$, likely requires the total mode phase velocity shear (not just the $v_{\rm E\times B}$ Doppler part) $r/q \partial (q v_{\rm mode}/r)/\partial r \geq \gamma_{\rm max}$. "Profile curvature" (x² profile variations in γ_0) works against stabilization from "profile shear" (x-variation). From studies of global eigenmodes of the "ballooning-Schrödinger equation,"⁴ the profile curvature is generally not important if ρ^* is typically small. Further studies of profile stabilization use the 2d full radius ITG code.⁵

¹Work supported by U.S. DOE Grant DE-FG03-959ER543094 and the Numerical Tokamak Turbulence Project.

In collaboration with R.L. Dewar and X. Garbet.

²R.E. Waltz, G.D. Kerbel, J Milovich, and G.W. Hammett, Phys. Plasmas 2 (1995) 2408; Phys. Plasmas 1 (1994) 2229.

³J.W. Connor, J.B. Taylor, and H.R Wilson, Phys. Rev. Lett. **70** (1993) 1803.

⁴R.L. Dewar, Plasma Phys. and Control. Fusion **39** (1997) 437.

 $^5 \mathrm{X}.$ Garbet and R.E. Waltz, Phys. of Plasmas **3** (1996) 1898.