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WHAT THIS TALK IS ABOUT

•   This talk is about the quench rule for rotational shear stabilization of turbulence in

tokamaks: when the ExB shear rate  γE=(r/q)∂(qVExB/r)/∂r exceeds the maximum
local ballooning mode growth rate  γmax  turbulent diffusion is quenched.

•   This rule is the basis for transport models χ=(1 -γE/γmax)χ0 describing core transport

barriers (Waltz, Staebler, Dorland, Hammett, Kotschenreuther & Konings 1997)

•   This talk  is not about the experimental fidelity of the rule.   For this see

• Burrell (APS review talk 1996 );

• Synakowski et al &  Greenfield et al (APS invited  papers 1996 )

• Lao et al (APS invited paper 1995)

•   This talk  is about the numerical and theoretical evidence and limitations for the rule.
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BACKGROUND TO ANALYTIC  THEORIES

ExB shear rate : γE=(r/q)∂(qVExB/r)/∂r           complex ballooning mode growth rate: γ0
nonlinear 2 point renormalization linear eigenmode stability

ρ∗ →0

VExB >> V∗
EXB shear only

x-variation  only
Im (dγ0 /dx) = ky γE

Biglari, Diamond, &Terry  1990
Shaing,  Crume,& Houlberg 1990
 Zhang & Mahajan 1992
•  turbulence suppression
•  γE_norm ≈∆ω(∆kx/∆ky)
           ∆ω≡  D∆kx2

•  no distinction slab / torus

Connor,Taylor,&Wilson  1993

  •   toroidal process at smallest γE

reduces eigenmode rate to small
ballooning mode angle average rate

  •  transport follows eigenmode rate
resulting in slab-like  levels

ρ∗ finite
VExB =O ( V∗ )
x-variation
 (dγ0 /dx) = γ0'
    profile shear
x2-variation
(d2γ0 dx2) =γ0''
   profile curvature

Rominelli & Zonca 1993
Dewar 1996

  •  profile curvature Re(γ0'')
works against
profile shear stabilizationIm(γ0')
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 PREVIOUS NONLINEAR SIMULATIONS

ExB shear rate : γE=(r/q)∂(qVExB/r)/∂r         complex ballooning mode growth rate: γ0
gyrofluid ITG  ballooning mode or "flux tube" code

ρ∗ →0

VExB >> V∗
EXB shear only

x-variation  only

Im (dγ0 /dx) = ky γE

Waltz, Kerbel, & Milovich 1994
•  turbulence  quenched
•  γE_crit  ≈ γmax= max  {Re (γ0)}
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•  χ=(1 -γE/γmax)χ0 basis of  models
for core transport barriers

  • Get quench for fixed γP

 but for pure toroidal rotation,
parallel shear rate γP=(Rq/r)γE can
increase γmax (γP) faster than γE

avoiding quench.

  • Superficial resemblance to
Biglari, Diamond,&Terry rule
since ∆ω (∆kx/∆ky) tracks
γmax for isotropic turbulence

• Appears not to follow eigenmode
stability byConnor, Taylor,& Wilson
rule since eigenmodes are stable
at very small γE here.
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OUTLINE TO  NEW  WORK

•   Review of the ExB shear in ballooning mode representations

 • Coupling in ballooning angle θ0  versus convection in ballooning angle θ0

• How a new mode centered Floquet ballooning representation avoids numerical
"box mode" instabilities.

•  Gyrofluid ITG  ballooning mode or ρ∗ →0 "flux tube" numerical illustrations showing

how the  γE_crit  ≈ γmax  quench rule results from a nonlinear convective
amplification process unique to toroidal geometry.

•   Likely modifications and limitations on the γE_crit  ≈ γmax  quench rule for finite ρ∗
and general profile shear and profile curvature: lessons from the ballooning-
Schrodinger eigenmode equation.
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•   BALLOONING MODE AND REPRESENTATIONS

dF/dt = ∂F/∂t + v~ExB •∇ ⊥ F                   ExB nonlinear coupling

•  x'-space  radial direction   VExB =  γE x'        γE=(r/q)∂(qVExB/r)/∂r

  dF/dt = -(γE x') i ky F        +     L F                         L   linear operations

 •  transform  kx'-space   or   ballooning mode -space   F(θ,θ0)

    x'f = -i  ∂F/∂kx'

    kx' ≡ kys^θ0            ky ≡nq / r            s^ ≡ ( r/q ) ( d q/dr )

dF(θ,θ0)/dt = -(γE/s^) ∂F(θ,θ0)/∂θ0 + L[θ -θ0, cos(θ), ∂/∂θ] F(θ,θ0)

_each F(θ,θ0) centered at θ≈θ0

_For finite γE, θ0 is no longer a "good quantum number"

_ExB shear γE linearly "couples"θ0 's

_θ0 discrete:  ∂F/∂θ0≈∆F/∆θ0
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•   BALLOONING MODE AND REPRESENTATIONS  continued

•  Cooper transformation θ0→θ0+(γE/s^)t        "Floquet ballooning mode"  F'(θ,θ0)

  dF'(θ,θ0)/dt  =   L [θ - (θ0+(γE/s^)t), cos(θ), ∂/∂θ ] F'(θ,θ0)

_ExB shear γE  linearly convects each θ0

_Easy to see Connor,Taylor, & Wilson rule for eigenmode or time average growth rate at
small γE/s^ when modes not distorted or broken up:

                          γ γ θ θ π0 0 0 0
2= ∫ ( ) /d << γ

0
(0)
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•   BALLOONING MODE AND REPRESENTATIONS  continued

 •  Rotating frame transformation θ→θ+(γE/s^)t   "centered Floquet ballooning mode"  F''(θ,θ0)

dF''(θ,θ0)/dt=(γE/s^) ∂F"(θ,θ0)/∂θ+L[θ-θ0,cos(θ+(γE/s^)t),∂/∂θ] F''(θ,θ0)

 _Explicitly displays "poloidal breakup term "  which stabilizes modes in the slab when
cos(  ) dependence is dropped or stabilizes toroidal modes at large γE/s^ even when
γ γ θ θ π0 0 0 0

2= ∫ ( ) /d   > 0.

_Leaves nonlinear terms invariant, modes stay centered at θ≈θ0  and do not rotate out
of the finite θ numerical box
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•   Why the centered Floquet ballooning mode representation is best
for numerical simulations

_All represenations are equivalent if θ0 is a continuous variable !

_But to do ( ky, kx') nonlinear coupling  we must treat [kx'=kys^θ0] θ0 as a discreet variable.

 Discreteness in θ0 means we have a "cyclic box" in x-space

Two "visions" of "homogeneous" ExB shear.

v E

x

cyclic 
boxes 

θ
0
 continuum

θ
0
 grid

"box   modes"
live in corners
of 0 shear

_Miller and Waltz (1994) showed that
discrete θ0 could lead to "box modes"
which require a finite γE to stabilize, even
when "true" continuum eigenmodes were
stable

 γ γ θ θ π0 0 0 0
2= ∫ ( ) /d  < 0

_The  quench rule γE_crit ≈ γmax in the
discrete θ0 nonlinear ballooning mode code
was later found to be associated with linear
stabilization of "box modes".
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•   Numerical illustrations with new centered Floquet ballooning
mode representation which avoids numerical "box modes"

but still recovers approximate quench rule    γE_crit ≈ γmax

•   ITG with adiabatic electrons
R / a = 3, a/Ln=1, a/LT=3, q=2, s^=1,
α=0, γP=0

•  At γE=0.03,  least stable mode
kyρs=0.3 time average growth rate
or  eigenmode rate  same as
ballooning mode angle average rate

   γ γ θ θ π0 0 0 0
2= ∫ ( ) /d   =  -.033

which is negative.

•   Convective amplification of 316x
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•  At small γE turbulence persists from convective amplification and
nonlinear coupling  even with stable eigenmodes.

     ITG  with adiabatic electrons
•   At γE=0.03 diffusion is only slightly

suppressed.

•    After multiplying all amplitudes by

0.01X, the turbulence is able recover
but it does not recover after 0.0001X.

•    Implies that Floquet modes passing

bad curvature region are convectively
amplified  and  nonlinearly couple
energy to convectively decaying modes
passing good curvature region
preventing  eigenmode decay.
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•   At higher shear rates turbulence quenched at near γE_crit  ≈ γmax

R / a = 3, a/Ln=1, s^=1, α=0, γP=0
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•   kyρs-spectrum as a function of  γE

R / a = 3, a/Ln=1, a/LT=3, q=2, s^=1, α=0, γP=0

•  Depletion at low-ky suggests local rule γE_crit  ≈ γ (ky) may be justified.

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

(n
~

/n
0
) rm

s= 
( Σ

kx
  [(

n~
/n

0
) rm

s]2
 ) 1

/2

ρ
s
k

y

s^=1.
a/L

T
=3

q=3

γ
E
=0.0

0.03

0.6
0.09



R. E. Waltz  APS '97 QTYUIOP

•   Quench rule γE_crit  ≈ γmax persists at low s^ = (r/q ) (d q/ dr)
•   Even though the Floquet θ0 rotation rate is γE/s^,

          there is no evidence that the critical γE ∝  s^ γmax.

•   Hence no evidence here that s^=0  is the "seat" of core
          reversed shear transport barrier.
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•   (γE /s^)/γmax  scaling does not give a good invariance with s^.



R. E. Waltz  APS '97 QTYUIOP

•   At low s^ convection speed γE/s^ goes up,  but most unstable mode
at  θ0 = 0  must  convect  1/s^ times farther in θ0 to reach stability.

            ∆θ0 ≈  π/2                        ∆θ0 ≈  4π

•   Heuristic argument: Balancing growth time with convection time  implies

                 γE_crit  ≈  s^∆θ0  γmax ≈  Ο(1) γmax
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•     γE_crit does not follow eigenmode stability in toroidal geometry

R / a = 3, a/Ln=1, q=2, α=0, γP=0

γE_<γ> is the ExB shear rate for eigenmode stability   <γ> =0.

Due to the poloidal breakup effect, actual rate   <γ> ≤ <γ>0  Connor,Taylor,& Wilson rate
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•  γE_crit does follow eigenmode stability in slab geometry  γE_crit  >> γmax

R / a = 3, a/Ln=1, a/LT=3, q=2, s^=1, α=0, γP=0    toroidal curvature terms "turned off"
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•   Summary of ITG simulation cases for quench rule

R / a = 3, a/Ln=1,  α=0, γP=0
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• In summary, for the vanishing ρ∗  limit,
it appears that γE_crit ≈ 4/3 γmax is the
best approximate description of the
critical ExB shear rate for quenching
transport in toroidal geometry.
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•   Quantitative test of 2-point nonlinear renormalization theories
_Theory: nonvanishing suppression factor  χ/χ0 = 1/[1 + (γE/γE_norm)2 ]
     γE_norm ≈ ∆ωt (∆kx/∆ky)          ∆ωt = D∆kx2  used interchangeably
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• ∆ωt (∆kx/∆ky) does tracks γmax

   using D = χ
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   • But supression formula gives less than
      10% reduction at the actual quench point.

_Most importantly, this (ρ∗ ->0) theory does not account for the difference
between simulations in slab and toroidal geometry.
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•   Likely  modifications and limitations on the  γE_crit  ≈ γmax  quench rule :
lessons from the ballooning-Schrodinger eigenmode equation.

complex ballooning mode growth rate: γ0(x,θ0)   expand in x=r-r0

ρ∗ finite

VExB = O ( V∗ )

x-variation
 (dγ0 /dx) = γ0'
    profile shear
Im(dγ0 /dx)=ky γmode

x2-variation
(d2γ0 dx2) =γ0''
   profile curvature

γ = γ0  +  γ0' x  +  γ0''/2  x2  +  [Re(γ0) -<γ>0 ][cos(θ0)-1]

     x ↔ −i ∆ ss ∂/∂θ0      θ0 ↔ i ∆ ss ∂/∂x

• generalize γE →γmode=(r/q)∂(qVmode/r)/∂r  to include shear in

intrinsic mode phase velocity not just ExB Doppler shift

      ⇒   γmode_crit  ≈ γmax
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•   Likely  modifications and limitations on the  γE_crit  ≈ γmax  quench rule :
lessons from the ballooning-Schrodinger eigenmode equation....continued
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  with poloidal breakup

x with 1/n radial stabilization

"bound" 
harmonic oscillator solution

"passing" CTW solution

jump

γbound=γ0 -1/2 (-γ0''∆ss2γ0)1/2 - 1/2(γ0'2/ γ0'' )
γpass =  γ γ θ θ π0 0 0 0

2= ∫ ( ) /d

• Re  (γ) = max {Re  ( γbound), Re  ( γpass) }

• 1/n  "radial correction" is small

• Ballooning-Schrodinger equation does
not contain poloidal breakup

• Jump point likely criterion for minimum
profile shear γ0' or γmode to ignore
profile curvature γ0'' which prevents mode
circulation and convective amplifcation:

Re  [1/2 (γ0'2/ γ0'' )]  >
                       Re  [ γ0 -<γ>0]

otherwise quench rule may not hold
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CONCLUSIONS

•  From ITG adiabatic electron simulations the quench rule for rotational shear

stabilization γE=(r/q)∂(qVExB/r)/∂r ≈ γmax results from a nonlinear

convective amplification process unique to toroidal geometry.  The rule holds over
a wide parameter range  including low s^= (r/q ) (d q/dr) at vanishing ρ∗

• ExB shear stabilization does not follow eigenmode stability in toroidal geometry
but does follow eigenmode stability in slab geometry.

•  From the ballooning-Schrodinger eigenmode equation at finite ρ∗ we speculate:

 • The rule should  be modified to include the total mode velocity
not just the EXB Dopper shift.

• The quench rule is likely to hold only if the profile shear γ0'= dγ0/dx is large
enough to  overcome  profile curvature γ0'' = d2γ0/dx2  which prevents full
circulation in ballooning mode angle  and convective amplifcation.

•   Studies with 3D full radius nonlinear simulations are needed at finite but small  ρ∗


