THEORY AND SIMULATION OF ROTATIONAL SHEAR STABILIZATION OF TURBULENCE

R.E. WALTZ, R.L.DEWAR*, and X. GARBET**

*The Australian National University,

******Association Euratom-CEA Cadarache

GENERAL ATOMICS San Diego, California

Division of Plasma Physics APS Meeting, Pittsburgh, PA, November 17-21, 1997

WHAT THIS TALK IS ABOUT

- This talk is about the quench rule for rotational shear stabilization of turbulence in tokamaks: when the ExB shear rate γ_E=(r/q)∂(qV_{ExB}/r)/∂r exceeds the maximum local ballooning mode growth rate γ_{max} turbulent diffusion is quenched.
- This rule is the basis for transport models χ=(1 γ_E/γ_{max})χ₀ describing core transport barriers (Waltz, Staebler, Dorland, Hammett, Kotschenreuther & Konings 1997)
- This talk is not about the experimental fidelity of the rule. For this see
 - Burrell (APS review talk 1996);
 - Synakowski et al & Greenfield et al (APS invited papers 1996)
 - Lao et al (APS invited paper 1995)
- This talk is about the numerical and theoretical evidence and limitations for the rule.

BACKGROUND TO ANALYTIC THEORIES

ExB shear rate : $\gamma_{E}=(r/q)\partial(qV_{ExB}/r)/\partial r$ complex ballooning mode growth rate: γ_{0}			
	nonlinear 2 point renormalization	linear eigenmode stability	
ρ _* →0	Biglari, Diamond, &Terry 1990	Connor, Taylor, & Wilson 1993	
	Shaing, Crume,& Houlberg 1990		
V _{ExB} >> V _*	Zhang & Mahajan 1992	• toroidal process at smallest γ_{E}	
EXB shear only	 turbulence suppression 	reduces eigenmode rate to small	
	 Y_{E_norm} ≈∆ω(∆k_x/∆k_y) 	ballooning mode angle average rate	
x-variation only	$\Delta \omega \equiv D \Delta k_X^2$		
Im (d γ_0 /dx) = ky γ_E	 no distinction slab / torus 	 transport follows eigenmode rate 	
		resulting in slab-like levels	
ρ∗ finite		Rominelli & Zonca 1993	
V _{ExB} = O (V _*)		Dewar 1996	
x-variation			
(dγ̂0 /dx) = γ̂0'		• profile curvature <i>Re</i> (Y0")	
profile shear		works against	
x ² -variation		profile shear stabilization Im(Yo')	
(d2γ0 dx2) =γ0"			
profile curvature			

PREVIOUS NONLINEAR SIMULATIONS

ExB shear rate : $\gamma_{E}=(r/q)\partial(qV_{ExB}/r)/\partial r$ complex ballooning mode growth rate: γ_{0}			
	gyrofluid ITG ballooning mode or "flux tube" code		
ρ _* →0	Waltz, Kerbel, & Milovich 1994 • turbulence quenched	 Get quench for fixed γ_P but for pure toroidal rotation, 	
V _{ExB} >> V _*	• $\gamma_{E_crit} \approx \gamma_{max} = max \{ Re(\gamma_0) \}$ parallel shear rate $\gamma_{P} = (Rq/r)\gamma_{E} can$		
EXB shear only	² γ _Γ ≈γ _σ _σ	increase γ_{max} (γ_{P}) faster than γ_{E}	
x-variation only $Im (d\gamma_0 / dx) = ky \gamma_E$	$\begin{array}{c} \nabla_{1.5} \\ \nabla_{0} \\ \vdots \\ \ddots \\ 0.5 \\ 0.5 \end{array} + \begin{array}{c} \gamma_{P} = 18 \gamma_{E} \\ \gamma_{P} = 12 \gamma_{E} \\ \gamma_{P} = 0 \\ \gamma_{P} = 0 \\ 0 \end{array}$	• <u>Superficial</u> resemblance to Biglari, Diamond,&Terry rule since $\Delta \omega$ ($\Delta k_X/\Delta k_y$) tracks γ_{max} for isotropic turbulence	
	0 0.02 0.04 0.06 0.08 0.1 $\gamma_{E}/[c_{s}/a]$ • $\chi = (1 - \gamma_{E}/\gamma_{max})\chi_{0}$ basis of models for core transport barriers	• <u>Appears</u> not to follow eigenmode stability byConnor, Taylor,& Wilson rule since eigenmodes are stable at very small γ_E here.	

OUTLINE TO NEW WORK

- Review of the ExB shear in ballooning mode representations
 - Coupling in ballooning angle θ_0 versus convection in ballooning angle θ_0
 - How a new mode centered Floquet ballooning representation avoids numerical "box mode" instabilities.
- Gyrofluid ITG ballooning mode or P*→0 "flux tube" numerical illustrations showing how the Y_{E_crit} ≈ Y_{max} quench rule results from a nonlinear convective amplification process unique to toroidal geometry.
- Likely modifications and limitations on the γ_{E_crit} ≈ γ_{max} quench rule for finite ρ* and general profile shear and profile curvature: lessons from the ballooning-Schrodinger eigenmode equation.

• BALLOONING MODE AND REPRESENTATIONS

$dF/dt = \partial F/\partial t + v \sim_{ExB} \bullet \nabla \bot F$	ExB nonlinear coupling
• x'-space radial direction $V_{ExB} = \gamma_E$	$\chi' \gamma_{E}=(r/q)\partial(qV_{ExB}/r)/\partial r$
$dF/dt = -(\gamma_E x') i ky F + L F$	L linear operations

BALLOONING MODE AND REPRESENTATIONS continued

BALLOONING MODE AND REPRESENTATIONS continued

• Rotating frame transformation $\theta \rightarrow \theta + (\gamma_E/s^{\wedge})t$ "centered Floquet ballooning mode" F"(θ, θ_0)

 $dF''(\theta,\theta_0)/dt = (\gamma_E/s^{\wedge}) \frac{\partial F''(\theta,\theta_0)}{\partial \theta} + L[\theta-\theta_0,\cos(\theta+(\gamma_E/s^{\wedge})t),\partial/\partial \theta] F''(\theta,\theta_0)$

_Explicitly displays "poloidal breakup term " which stabilizes modes in the slab when cos() dependence is dropped or stabilizes toroidal modes at large γ_E/s^{\wedge} even when $\langle \gamma \rangle_0 = \oint \gamma_0(\theta_0) d\theta_0 / 2\pi > 0.$

_Leaves nonlinear terms invariant, modes stay centered at $\theta \approx \theta_0$ and do not rotate out of the finite θ numerical box

• Why the centered Floquet ballooning mode representation is best for numerical simulations

_All represenations are equivalent if θ_0 is a continuous variable !

_But to do (k_y , k_x') nonlinear coupling we must treat [$k_x'=k_ys^{0}$] θ_0 as a discreet variable.

Discreteness in θ_0 means we have a "cyclic box" in x-space

Two "visions" of "homogeneous" ExB shear.

_Miller and Waltz (1994) showed that discrete θ_0 could lead to "box modes" which require a finite γ_E to stabilize, even when "true" continuum eigenmodes were stable

$$\langle \gamma \rangle_0 = \oint \gamma_0(\theta_0) d\theta_0 / 2\pi < 0$$

The quench rule $\gamma_{\text{E_crit}} \approx \gamma_{\text{max}}$ in the discrete θ_0 nonlinear ballooning mode code was later found to be associated with linear stabilization of "box modes".

• Numerical illustrations with new centered Floquet ballooning mode representation which avoids numerical "box modes"

but still recovers approximate quench rule $\gamma_{E_{crit}} \approx \gamma_{max}$

• At small γ_E turbulence persists from convective amplification and nonlinear coupling even with stable eigenmodes.

ITG with adiabatic electrons

- At $\gamma_{E}=0.03$ diffusion is only slightly suppressed.
- After multiplying all amplitudes by 0.01X, the turbulence is able recover but it does <u>not</u> recover after 0.0001X.

• Implies that Floquet modes passing bad curvature region are convectively amplified and nonlinearly couple energy to convectively decaying modes passing good curvature region preventing eigenmode decay.

• At higher shear rates turbulence quenched at near $\gamma_{E_{crit}} \approx \gamma_{max}$

R / a = 3, a/L_n=1, s^=1, α =0, γ _P=0

• kyps-spectrum as a function of γE

R / a = 3, a/L_n=1, a/L_T=3, q=2, s^=1, α=0, γP=0

• Depletion at low-ky suggests local rule $\gamma_{E_crit} \approx \gamma$ (ky) may be justified.

- Quench rule $\gamma_{E_{crit}} \approx \gamma_{max}$ persists at low s^ = (r/q) (d q/ dr)
 - Even though the Floquet θ_0 rotation rate is $\gamma_E/s^{,}$ there is no evidence that the critical $\gamma_E \propto s^{,} \gamma_{max}$.
 - Hence no evidence here that s^=0 is the "seat" of core reversed shear transport barrier.

• $(\gamma_E / s^{-})/\gamma_{max}$ scaling does not give a good invariance with s^.

• At low s[^] convection speed γ_E /s[^] goes up, but most unstable mode at $\theta_0 = 0$ must convect 1/s[^] times farther in θ_0 to reach stability.

• Heuristic argument: Balancing growth time with convection time implies

 $\gamma_{\text{E_crit}} \approx \mathbf{S}^{\Delta} \Theta \mathbf{O} \ \gamma_{\text{max}} \approx \mathbf{O}(1) \ \gamma_{\text{max}}$

• YE_crit does not follow eigenmode stability in toroidal geometry

R / a = 3, a/L_n=1, q=2, α =0, γ P=0

 $\gamma E_{<\gamma>}$ is the ExB shear rate for eigenmode stability $<\gamma>$ =0.

Due to the poloidal breakup effect, actual rate $<\gamma> \le <\gamma>0$ Connor, Taylor, & Wilson rate

YE_crit does follow eigenmode stability in slab geometry YE_crit >> Ymax

R / a = 3, a/L_n=1, a/L_T=3, q=2, s^=1, α =0, γ P=0 toroidal curvature terms "turned off"

• Summary of ITG simulation cases for quench rule

R / a = 3, a/L_n=1, α =0, γ P=0

• In summary, for the vanishing $\rho *$ limit, it appears that $\gamma_{\text{E}_\text{crit}} \approx 4/3 \gamma_{\text{max}}$ is the best approximate description of the critical ExB shear rate for quenching transport in toroidal geometry.

Quantitative test of 2-point nonlinear renormalization theories

_Theory: nonvanishing suppression factor $\chi/\chi_0 = 1/[1 + (\gamma_E/\gamma_{E_norm})^2]$

 $\Delta \omega_t = D\Delta k_x^2$ used interchangeably $\gamma_{\text{E}_{norm}} \approx \Delta \omega_t (\Delta k_x / \Delta k_y)$

• $\Delta \omega_t (\Delta k_x / \Delta k_y)$ does tracks γ_{max} using $D = \chi$

 But supression formula gives less than 10% reduction at the actual quench point.

0.75

1

_Most importantly, this ($\rho*$ ->0) theory does not account for the difference between simulations in slab and toroidal geometry.

• Likely modifications and limitations on the $\gamma_{\text{E_crit}} \approx \gamma_{\text{max}}$ quench rule : lessons from the ballooning-Schrodinger eigenmode equation.

complex ballooning mode growth rate: $\gamma_0(x,\theta_0)$ expand in x=r-r0

• Likely modifications and limitations on the $\gamma_{E_crit} \approx \gamma_{max}$ quench rule : lessons from the ballooning-Schrodinger eigenmode equation....continued

- From ITG adiabatic electron simulations the quench rule for rotational shear stabilization γ_E=(r/q)∂(qV_{ExB}/r)/∂r ≈ γ_{max} results from a nonlinear convective amplification process unique to toroidal geometry. The rule holds over a wide parameter range including low s[^]= (r/q) (d q/dr) at vanishing ρ*
 - ExB shear stabilization does not follow eigenmode stability in toroidal geometry but does follow eigenmode stability in slab geometry.
- From the ballooning-Schrodinger eigenmode equation at finite $\rho *$ we speculate:
 - The rule should be modified to include the total mode velocity not just the EXB Dopper shift.
 - The quench rule is likely to hold only if the profile shear $\gamma_0' = d\gamma_0/dx$ is large enough to overcome profile curvature $\gamma_0'' = d^2\gamma_0/dx^2$ which prevents full circulation in ballooning mode angle and convective amplifcation.
- Studies with 3D full radius nonlinear simulations are needed at finite but small $\rho*$

