Effect of the q and $E\times B$ Shear Profiles on Confinement and Stability of ELMing H–mode Discharges

B.W. RICE, T.A. CASPER, B.W. STALLARD, LLNL, J.R. FERRON, C.M. GREENFIELD, G.L. JACKSON, R.J. LA HAYE, T.C. LUCE, E.J. STRAIT, GA, R. MAINGI, M.R. WADE, ORNL — Previous experiments in DIII–D and other tokamaks have demonstrated improved fusion performance in L–mode and ELM-free H–mode discharges with negative or weakly positive central magnetic shear and large $E\times B$ shear in both high and low triangularity shapes. To date, the improved performance has been transient, being limited by MHD stability. Recently, we have investigated the effect of shaping the q profile and the $E\times B$ shear profile on confinement and stability in quasi steady-state (>1 s) discharges with an ELMing H–mode edge. The divertor cryo-pump is used to maintain low density which enables larger $E\times B$ shear to be obtained, while early beam injection is used to modify the q profile. In initial experiments, the best results were obtained with q_0 slightly above one, where $\beta_N \sim 2.8$ and $H_{\text{ITER90p}} \sim 2.4$ were maintained for 1.5 s with type I ELMs. This value of β_N exceeds the neoclassical tearing mode limit; the absence of these modes may be due to the lack of a sawtooth trigger.

Work supported by U.S. DOE Contracts DE-AC03-89ER51114, W-7405-ENG-48, and DE-AC05-96OR22464.

B.W. Rice
rice@gav.gat.com
Lawrence Livermore National Laboratory

Date submitted: July 8, 1997

Electronic form version 1.2