Coherent Modes in the Edge of DIII–D H–modes

R.A. MOYER, R. LEHMER, J.A. BOEDO, UC, San Diego, T.L. RHODES, C.L. RETTIG, E.J. DOYLE, UCLA, J.G. WATKINS, Sandia National Laboratories, R.J. GROEBNER, K.H. BURRELL, General Atomics — Electrostatic fluctuations in the edge of DIII–D H–modes are often characterized by the presence of a large amplitude, coherent or quasi-coherent mode (f=50–60 kHz; δf=5–20 kHz). This mode is similar to coherent modes in the edge of ohmic discharges in TEXT and has also been seen in the edge of H–modes in PBX-M. The mode is localized to a narrow radial extent just inside the separatrix. In ohmic H–modes, the mode is a quasi-coherent, localized burst of turbulence. In beam heated discharges, the mode is coherent and dominates the power spectra for both density and potential fluctuations after onset 10–30 ms into the H–mode phase. In DIII–D, this mode directly drives particle and convective heat fluxes. Mode characteristics and plasma conditions at onset of the mode will be compared with theoretical predictions of such modes.

1Supported by U.S. DOE Contracts DE-AC03-89ER51114, DE-AC04-94AL85000, Grants DE-FG03-95ER54294, DE-FG03-86ER53266.