Abstract Submitted for the DPP97 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (experimental)

Measurements of Flows in the DIII-D Divertor by Mach Probes¹ J.A. BOEDO, R. LEHMER, R.A. MOYER, UC, San Diego, J.G. WATKINS, Sandia National Laboratories, D.N. HILL, Lawrence Livermore National Laboratory — Measurements of flow velocity in the lower divertor region were performed in the DIII-D tokamak using Mach pins mounted on a fast scanning probe array. Measurements for upper single null (USN) discharges, where the mach pins probe the stagnation point; are compared to measurements performed during lower single null (LSN) discharges in a variety of locations. Flows are directed towards the nearest divertor surface for non-detached LSN divertor conditions. The flow near the floor has a Mach number of near one. The flows in the private region can be close to sound speed even near the X-point; this could be related to a large ionization source at the X-point or in the private region. Data from a double probe can be used in combination with a Mach pin to provide mach numbers. Different models for the derivation of the Mach number will be evaluated and their dependence on T_i/T_e will be evaluated.

¹Work supported by U.S. DOE Contracts DE-AC03-89ER51114, W-7405-ENG-48, and Grant DE-FG03-95ER54294.

		J.A. Boedo
	Prefer Oral Session	boedo@ucsd.edu
X	Prefer Poster Session	University of California, San Diego

Date submitted: June 25, 1997 Electronic form version 1.2