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ELM Issues Important for ITER
♦ ITER requires H-mode τE for ignition and to maintain high 

PF during burn, HITER93-H > 0.8.

♦ Since steady state ELM free discharges have not been 
demonstrated ITER must be prepared to operate with ELMs

♦ The current ITER divertor design can tolerate 
1MJ/m2/ELM or 10MJ/ELM (1% at ignition) assuming all 
the ELM energy loss arrives in the divertor with the same 
spacial distribution as the steady state heat flux. 

♦ With these experiments we wish to answer the question:
Is high τE ELMy H-mode with low ELM heat flux to the 
divertor possible for ITER ?
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Discharges Studied
♦ ITER cross sectional shape and R/a (LDIII-D /LITER ∼ 0.2).

ο 3 < q95 < 6, (qITER = 3).

ο 0.75 < I(MA) < 1.5, (IITER = 22).

ο 1 < B(T) < 2, (BITER = 5.7).

♦ 0.06 < PIN/S (MW/m2) < 0.3, (0.17IGNITION < P/SITER < 
1.25BURN).

♦ 0.2 < nGREENWALD < 0.7, (nITER ∼ 1.0).

ο Gas Puff Fueled.

ο Open Divertor.

ο No Divertor Pumping.

ο ∇B Drift Toward the X-point.
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ELM Classification
♦ Type 1

ο dfreqELM/dPIN > 0

ο No Precursors

ο p’EDGE  ≈  p’BALLOONING

ο  Large ∆WELM/W ≤ 6 %

ο High HITER93-H > 0.9

♦ Type 3

ο dfreqELM/dPIN < 0

ο Coherent precursors

ο p’EDGE  ≤ p’BALLOONING

ο Small ∆WELM/W ≤ 1 %

ο Low HITER93-H < 0.9

ο Two Regimes

– Low ne

– Low Te
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Pedestal Heights for Different ELM Classes

♦ Different classes of ELMs appear in 
distinct regions of electron density 
and temperature pedestal heights.

♦ Pressure gradient, , at Type 1 
ELMs is near ideal ballooning limit.

♦ Type 3 ELMs appear in two regions.

ο Low ne Type 3 ELMs have  < 

CRIT . 

ο Low Te Type 3 ELMs have Te < 
TCRIT .  In ASDEX-U these 
ELMS have been produced with 

TYPE-1 at high ne . In 
DIII-D, ne was limited by 
marfing and return to L-mode. 
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H-Mode Pedestal and Energy Confinement

♦ Discharges with large H-mode 
pedestals have high energy 
confinement enhancement, H.

ο Type 1 ELM discharges 
have large pedestals due to 
high edge pressure gradient.

ο Low ne Type 3 ELM 
discharges have limited  
and therefore poor H.

ο Low Te Type 3 ELM 
discharges may reach higher 
H if increases at high ne as 
in ASDEX-U. 
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Critical Pressure Gradient for 
Low Density Type 3 ELMS

♦ Low ne Type 3 ELMs shut off at 
approximately the same edge 
pressure gradient, . 

♦ Discharges at high density 
which do not have Low ne Type 
3 ELMs reach the critical  
shortly after the L->H 
transition.

ο Rapid build up of  may be 
due to a large neutral influx 
following the L->H 
transition in this case. 
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Low Density Type 3 ELM Regime

♦ The end of the low density 
type 3 ELM phase has the 
characteristics of a secondary 
transition. 

ο Density fluctuations are 
reduced both at the L->T3 
and T3->T1 transitions. 

ο A sudden reduction in the 
width of the H-mode 
pedestal, PED, is also 
observed at the T3->T1 
transition.

L-mode <---- ---> Type 3

Type 3 <-------> Type 1
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H-Mode Pedestal Characteristics
♦ The width of the steep gradient region is relatively constant and similar for Type 1 

and Type 3 ELMs. 

ο The width is independent of IP at fixed q for Type 1.

♦ The range of pressure gradient, , spanned in Type 1 ELMs is constant at fixed q.

♦ The lower bound in  for Type 1 is roughly the upper bound for Type 3. 
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Estimate of Type 1 ELM 
Energy Loss for ITER

♦ The DIII-D data for ITER shape discharges suggest that:

ο The range in edge pressure gradient, , spanned in Type 1 
ELMs remains constant at fixed q.

– The same  might be expected in ITER since the 
magnetic shear is independent of size.  

ο The width of the steep gradient region, PED ,is fixed through 
most of the ELM cycle and is fixed at fixed q.

♦ Assuming the type 1 ELM energy loss represents a change in the 
H-mode pedestal height: ∆WELM = δPED ∆p’PED V.

♦ Assuming δPED ∝ ρP
g L1-g where L is the length scale gives for

ο g=0, ∆WITER = 32 MJ (suggested by PED=const at fixed q)

ο g=0.5, ∆WITER = 11 MJ, g=1, ∆WITER = 1 MJ

ο δPED ∝ T1/2 (JET), ∆WITER = 7 MJ
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Scaling of Type 1 ELM Energy Loss

♦ A scaling of the energy loss per 
Type 1 ELM with global 
parameters gives 26 MJ for 
ITER. 

♦ Using ITER93-H scaling for 
energy confinement time 
implies ∆WELM depends 
strongly only on plasma current 
and geometry. 
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Type 1 ELM Effects in the Divertor

♦ For ITER shaped plasmas with q95 = 3.2 most of the ELM 
energy loss reaches the divertor with the majority to the 
inner leg (which is typically detached in DIII-D).
        ∆WDIV      = (0.75 ± 0.25) ∆WELM 

            ∆WINNER = (0.50 ± 0.16) ∆WELM

            ∆WOUTER= (0.23 ± 0.11) ∆WELM

♦ The ELM heat flux is distributed over about a  factor of 
two larger area than the time averaged heat flux.

♦ The ELM energy loss arrives in the divertor on a 
millisecond time scale.
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Divertor Heat Flux During Type 1 ELM
♦ The ELM heat flux dominates the inboard heat flux since the inboard leg is 

typically detached.

♦ The ELM profile is broader at the outboard strike point than the steady state. 
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Conclusions
♦ Prospects for high energy confinement ELMy H-mode with 

low ELM heat flux to the divertor in ITER.

ο Although Type 3 ELMs have low W they may not be 
compatible with high H factor. 

– If the low ne regime is limited to < TYPE-1 and 

PED  are similar, then H will be reduced. 

–  In the low Te regime H might reach Type 1 values at 
high ne where possibly TYPE-3 = TYPE-1 (Asdex-U).

➆  TPED for ITER would be 6.4, 2.2, or 0.25 that of DIII-D for 
g of 0, 0.5, or 1.0. If the low Te regime represents a 
resistive effect it might not occur in a higher TPED  ITER.
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Conclusions, continued
♦ Prospects for high energy confinement ELMy H-mode with 

low ELM heat flux to the divertor in ITER.

ο Estimates of Type 1 ELM energy loss and divertor 
effects for ITER are near the limit of what is acceptable.

– Need to develop techniques for controlling either the 
ELM energy loss or the fraction which arrives in the 
divertor. 
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Conclusions, continued
♦ The oscillation of the edge pressure gradient between two 

limits for Type 1 ELMs is suggestive of the recent CDBM 
theory of S. Itoh, et. al[1] in which the plasma oscillates 
between M-Mode and H-mode.

[1] Sanae-I Itoh, Kimitaka Itoh, Atsushi Fukuyama, and
     Masatohi Yagi, Plasma Phys. Control. Fusion, 38
    (1966) 527-549.


