Abstract Submitted for the DPP96 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (experimental)

Dimensionless Parameter Scaling for Transport Physics and Performance Extrapolation¹ T.C. LUCE, C.C. PETTY, General Atomics — Previous work has demonstrated that the ρ_* (gyroradius normalized to plasma size) scaling of χ is not fixed, but variability is observed only in the ion channel. New results for high-q H–mode and low-q L-mode show ion ρ_* scaling which is Bohm (χ independent of ρ_*). Recent experiments show τ independent of β in both L-mode and H-mode. Proof of the dimensionless parameter scaling approach is to match discharges with identical dimensionless parameters, but different engineering parameters. Global comparisons of DIII–D with JET and C-Mod show very good agreement. Low-q, H-mode discharges in both JET and DIII–D found gyro-Bohm scaling up to the H–mode power threshold. As ρ_* is lowered, the loss power is less than that necessary to maintain H-mode. To match the similarity conditions, sufficient power to induce H-mode is required. The observed ρ_* scaling is consistent with $P_{\rm H} \propto n^{3/4} BS$ where S is the surface area of the plasma, which has a Goldston ρ_* scaling. An ignition point exists which is below the Troyon limit ($\beta_{\rm N} < 3.5$), below the Greenwald limit, and with sufficient power to remain in H-mode for a JET-like plasma (R = 2.74 m) at modest magnetic parameters (B = 5.7 T, I = 9.9 MA).

¹Work supported by U.S. DOE under Contract DE-AC03-89ER51114.

X

Prefer Oral Session Prefer Poster Session T.C. Luce Tim.Luce@gat.com General Atomics

Special instructions: P-1-18

Date submitted: February 20, 1997

Electronic form version 1.1