Abstract Submitted for the DPP96 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (experiment)

Increasing the Fusion Gain in DIII–D¹ E.A. LAZARUS, Oak Ridge National Laboratory, G.A. NAVRATIL, Columbia University, E.J. STRAIT, C.M. GREENFIELD, THE DIII–D TEAM, General Atomics, B.W. RICE, Lawrence Livermore National Laboratory — The performance of DIII–D tokamak discharges has been extended. In discharges where an NCS target is formed, the pressure is broadened to avoid pressure-driven global external kink limit. This pressure profile control is exercised by selecting the timing of an L–H transition. This transition results in an evolution of the pressure profile form, $p_0/\langle p \rangle$, from 5 to 2.5, allowing a doubling of β^* , resulting in neutron rates up to $2.4 \times 10^{16}/\text{s}$. We consistently observe that plasmas which maintain significant shear reversal collapse at lower values of β^* than those which have an essentially flat q-profile. Comparisons to stability calculations will be presented.

¹Work supported by U.S. DOE Contracts DE-AC05-96OR22464, DE-AC03-89ER51114, W-7405-ENG-48, and Grant DE-FG02-89ER53297.

X P	refer Oral Session	Ed.Lazarus@gat.com
□ P	refer Poster Session	Oak Ridge National Laboratory
Special instructions: O-1-2		

E.A. Lazarus

Date submitted: February 20, 1997 Electronic form version 1.1