Abstract Submitted for the DPP96 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (experimental)

Simulations of Energetic-Ion Losses During TAE Activity in DIII–D¹ E.M. CAROLIPIO, W.W. HEIDBRINK, University of California, Irvine, A. JAUN, Alfvén Laboratory, M.S. CHU, General Atomics, R.B. WHITE, C.Z. CHENG, G.Y. FU, Princeton Plasma Physics Laboratory — The TAE instability is of concern because it can cause large, concentrated losses of fast ions.² To better understand these losses, we compute the expected eigenfunction with the nonvariational ideal-MHD code NOVA and the kinetic antenna code PENN and then use these results as input for the Hamiltonian guiding-center code ORBIT. Fast-ion losses computed by ORBIT are compared with measured² losses. The distribution function of lost particles and typical loss orbits are also presented. Preliminary analysis shows that the NOVA-computed mode with an amplitude $\tilde{B}_{\rm r}/B$ set at $\sim 10^{-4}$ causes little ($\ll 1\%$) or no transport of beam ions, compared to measured losses of $\sim 8\%$.

¹Work supported by U.S. DOE Contracts DE-AC03-89ER51114, DE-AC02-76CH03073, Grant DE-FG03-92ER54145, and Subcontract SC-L134501.

²H.H. Duong *et al.*, Nucl. Fusion **33** (1993) 749.

	Edward Carolipio
Prefer Oral Session	carolipio@gav.gat.com
X Prefer Poster Session	University of California, Irvine
_	
Special instructions: P-1-8	

Date submitted: February 20, 1997 Electronic form version 1.1