Abstract Submitted for the 56th Annual Meeting
Division of Plasma Physics
October 27–31, 2014
New Orleans, Louisiana

Category Number and Subject:
[] Theory [X] Experiment

Edge Radial Electric Field and Ion Orbit Loss in DIII-D,*
J.S. deGrassie, R.J. Groebner, General Atomics; J.A. Boedo, UCSD;
B.A. Grierson, PPPL – The edge radial electric field, E_r, may be
largely determined by the value necessary to supply the neoclassical
return current to balance the loss current due to ion orbit loss. This is
the indication from a phenomenological model, motivated by recent
Mach Probe measurements of the edge co-L_p flow layer in DIII-D
[1,2], based on a simple empty loss cone orbit loss model [3,4].
Probe and charge exchange recombination measurements also show
a relatively large positive edge E_r just inside the LCFS in Ohmic
conditions, ~ 10 kV/m, which is explained in this model by the
propensity of the flow layer to drive return current. The E_r level is
also dependent on Z_{eff} in the edge - lower Z_{eff} promotes greater
negative E_r for current balance. The model will be compared with
measurements in Ohmic, L- and H-mode conditions.

*Work supported by the US DOE under DE-FC02-04ER54698, DE-
FG02-07ER54917 and DE-AC02-04ER54698.