Abstract Submitted for the 56th Annual Meeting Division of Plasma Physics October 27–31, 2014 New Orleans, Louisiana

Category Number and Subject:
[] Theory [X] Experiment

ITER Steady-State Demonstration on DIII-D,* J.M. Park, M. Murakami, A. Sontag, S.J. Diem, ORNL; C.T. Holcomb, LLNL; J.R. Ferron, T.C. Luce, GA; DIII-D Team – A systematic scan of q_{95} (=4.5, 5.5, 6.5) at constant β_N (~3) and high q_{min} (~1.8-2.1) has been obtained in a lower single null ITER-like shape to study confinement, stability and edge pedestal characteristics using off-axis neutral beam current drive for the ITER steady-state mission ($f_{NI}=1$, Q=5). The edge pedestal height is found substantially lower than in similar 2008 experiments, resulting in lower f_{NI} due to reduced edge pedestal bootstrap current. Toroidal Alfvén Eigenmode power fluctuation is well correlated with the estimated beam ion diffusion (D_b). Strong dependency of D_b on q_{95} , q_{min} and neutral beam power (PNB) has been found indicating that lower q_{95} (<=4.5) would have reasonably good beam ion confinement ($D_b \le 0.3 \text{ m}^2/\text{s}$) even at $q_{\text{min}}>2$ and high PNB=12 MW. The calculated ideal β_{N} stability limit increases with lower q_{95} allowing access to high β_N (>3.5) needed for $f_{\text{NI}}=1$ and Q=5. This study shows that optimum choice of q_{95} (~5.5) and q_{\min} (>2) is crucial to achieving Q=5 steady-state mission for ITER.

*Work supported by the US Department of Energy under DE-AC05-000R22725, DE-AC52-07NA27344 and DE-FC02-04ER54698.