Fast Ion Transport Studies in DIII-D High β_N Steady State Scenarios^{*}

C.T. Holcomb, Lawrence Livermore National Laboratory

DIII-D research is identifying paths to optimize energetic particle (EP) transport in high $\beta_{\rm N}$ steady state tokamak scenarios. Operation with $q_{\rm min} > 2$ is predicted to achieve high $\beta_{\rm N}$, confinement, and bootstrap fraction. However DIII-D experiments have shown that Alfvén eigenmodes (AE) and correlated EP transport can limit the performance of some $q_{\min} > 2$ plasmas. Enhanced EP transport occurs in plasmas with $q_{\min}=2-2.5$, $q_{95}=5-7$, and relatively long slowing down time. Strong AEs are present, the confinement factor $H_{so}=1.6-1.8$ and β_{N} is limited to ~3 by the available power. These observations are consistent with EP transport models having a critical gradient in $\beta_{\rm f}$. However, adjusting the parameters can recover classical EP confinement or improve thermal confinement so that H₈₉>2. One example is a scenario with β_P and $\beta_N \approx 3.2$, $q_{\min} > 3$ and $q_{95} \approx 11$ developed to test control of long pulse, high heat flux operation on devices like EAST. This has an internal transport barrier at $\rho \approx 0.7$, bootstrap fraction > 75%, density limit fraction ≈ 1 , and $H_{so} \ge 2$. In these cases AE activity and EP transport is very dynamic - it varies between classical and anomalous from shot to shot and within shots. Thus these plasmas are close to a threshold for enhanced EP transport. This may be governed by a combination of a relatively low $\nabla \beta_{fast}$ due to good thermal confinement and lower beam power, short slowing down time, and possibly changes to the q-profile. Another example is scenarios with $q_{\min} \approx 1.1$. These typically have classical EP confinement and good thermal confinement. Thus by using its flexible parameters and profile control tools DIII-D is comparing a wide range of steady state scenarios to identify the key physics setting EP transport.

*Work supported by the US Department of Energy under DE-AC52-07NA27344, SC-G903402, DE-FC02-04ER54698, and DE-AC02-09CH11466.