Abstract Submitted for the 56th Annual Meeting Division of Plasma Physics October 27–31, 2014 New Orleans, Louisiana

Category Number and Subject:
[] Theory [X] Experiment

Analysis of Ideal Stability Limits in DIII-D Discharges with **High** β_N and ℓ_i ,* J.R. Ferron, T.C. Luce, GA; C.T. Holcomb, LLNL; J.M. Park *ORNL*; W.M. Solomon, *PPPL* – Broad pressure profiles in DIII-D discharges with high ℓ_i enable stable access to high plasma pressure. As β_N increases, the pressure peaking factor $f_n = P(0)/\langle P \rangle$ decreases, from $f_p \approx 3.7$ at $\beta_N \approx 2.9$ to $f_p \approx 2.4$ at $\beta_N > 4.5$. Simultaneously, the ideal low-n stability limits calculated with a conducting wall increase from $\beta_N \approx 3.6$ to nearly 6, so that β_N remains below the limit. In addition, f_p decreases as ℓ_i is increased. Thus, the high β_N stability limits result from both increased ℓ_i and decreased f_p . In a steady-state discharge, though, increased β_N will limit the practical value of ℓ_i because of the increase in the bootstrap current density, particularly in the H-mode pedestal. Reducing the pedestal pressure with an n=3 magnetic perturbation increases ℓ_i but also increases f_n so there is no net increase in the β_N limit. A change in the discharge shape to reduce the pedestal pressure, to the single-null divertor ITER shape from a double-null, results in an $\approx 15\%$ drop in the β_N limit.

*Work supported by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-00OR22725 and DE-AC02-09CH11466.