Abstract Submitted for the 55th Annual Meeting Division of Plasma Physics November 11–15, 2013 Denver, Colorado

Category Number and Subject: 6.19 Research in Support of ITER

[] Theory [X] Experiment

Impact of the Radiating Divertor Approach on Future Tokamaks,* T.W. Petrie, A.W. Leonard, T.C. Luce, General Atomics; F. Turco, Columbia U.; S.L. Allen, M.E. Fenstermacher, C.T. Holcomb, C.J. Lasnier, LLNL; R.A. Moyer, UCSD; J.G. Watkins, SNL – We report on recent results that apply the deuterium/neon-based radiating divertor approach to three future tokamak concepts: (1) ITER Baseline plasmas, (2) AT high performance plasmas, and (3) H-mode plasmas that are isolated from their divertor targets (Super X-like). Analysis of H-mode plasmas in the ITER Baseline shape, characterized by $q_{05}=3.15$, I/aB=1.4, $\beta_N=2$ in the ITER shape, indicates significant a heat flux reduction ($\sim 2.5x$) during both ELMing and between ELM periods and a factor of two increase in radiated power, almost all of which occurs in the divertor/SOL regions. Radiating divertor applied to AT plasmas (e.g., $\beta_N=3$ and $H_{89n}=2.4$) is shown to reduce heat flux at least 30%, while at the same time maintaining high performance characteristics. We present our most recent results of studies designed to assess the value of increasing parallel connection length (L_{u}) of the outer divertor leg in a radiating divertor environment. Previous experiments have suggested that significant heat flux reduction at the OSP can be possible by increasing L_{\parallel} .

*Work supported by the US DOE under DE-FC02-04ER54698, DE-FG02-04ER54761, DE-AC52-07NA27344, DE-FG02-07ER54917, and DE-AC04-94AL85000.