Abstract Submitted for the 55th Annual Meeting Division of Plasma Physics November 11-15, 2013 Denver, Colorado

Categor	y Nun	nber	and	Subject:
[] The	eory	[]	Exp	eriment

Analysis and Simulation of ITER Steady-State Discharges on **DIII-D,*** S.J. Diem, M. Murakami, J.M. Park, A.C. Sontag, *ORNL* – One of the primary goals of the ITER project is to demonstrate a reactor scale steady-state operation for future tokamaks. This is a challenging task which requires simultaneous operation with fully noninductive current drive, a fusion gain of $Q \ge 5$ and I_{BS} for discharges approximately 3000s in length. Previously, DIII-D has demonstrated fully noninductive scenario in ITER-like shaped plasmas at relatively high q_{95} ~6.5 and moderate β_N ~3 but with low fusion performance $(G=\beta_{\rm N}H_{89}/q_{95}^2\sim0.15)$. Recent high $q_{\rm min}$ experiment and modeling indicate that the goal of G=0.3 predicted for Q=5 operation on ITER can be achieved non-inductively at reduced q_{95} and at higher β_N . An optimum choice of q_{95} and β_N for the ITER steady-state mission will be discussed based on the experimental scaling from ITER demonstration discharges on DIII-D, as well as predictive FASTRAN scenario modeling using TGLF coupled to the Integrated Plasma Simulator. FASTRAN is a new iterative numerical procedure that integrates a variety of models (transport, heating, CD, equilibrium and stability) and has been shown to reproduce most features of DIII-D high beta discharges with a stationary current profile.

*ORNL is managed by UT-Battelle, LLC for the US DOE under DE-AC02-05ER22725 and DE-FC02-04ER54698.