The Dynamics of Turbulence and Flow During the L-H Transition

by

Z. Yan¹, G.R. McKee¹, J.A. Boedo², D.L. Rudakov², G.R. Tynan², P.H. Diamond², R.J. Groebner³, T.H. Osborne³ and P. Gohil³

¹University of Wisconsin-Madison, Madison, WI ²University of California-San Diego, La Jolla, CA ³General Atomics, San Diego, CA

Presented at the 54th Annual APS Meeting Division of Plasma Physics Providence, Rhode Island

October 29 — November 2, 2012

Motivation

- Understanding the L-H transition trigger mechanism is essential for fusion
 - Achieving H-mode will be critical to ITER
 - Need to understand the role of microscopic edge turbulence and flow dynamics
- Theory predicts turbulence driven shear flow plays a critical role to the L-H transition

• Requires detailed turbulence and flow dynamics examination in the edge region before, during and after the L-H transition

L-H Transition Obtained with Heating Power just above the L-H Transition Power Threshold

- LSN plasma shape (∇B towards X-point)
- Long wavelength density fluctuations are measured with high sensitivity 2D Beam Emission Spectroscopy (BES) array ($k_{\perp}\rho_i$ <1)
 - \tilde{n}/n
 - V_{θ}, V_r
 - Turbulence decorrelation rate
 - Correlation length

Turbulence Increases with Time and Power Approaching L-H Transition

Turbulent Velocity Fluctuation Measured from Image-based Velocimetry

- Vector-matching frame by frame to infer short time scale velocity fluctuation ^[1]
 - Over 10 ms time window
- With inferred $\widetilde{\mathcal{V}}_{ heta}$ and $\widetilde{\mathcal{V}}_{r}$
 - Calculate velocity fluctuation spectrum $S(\tilde{v}_{\theta})$
 - Infer Reynolds stress, in principal proportional to the electrostatic Reynolds stress $\langle \tilde{v}_r \tilde{v}_{\theta} \rangle$

Refer to G.McKee's poster on Thursday

Turbulence Flow Changes from GAM Dominant to LFZF Dominant Approaching the Transition

- GAM- Geodesic Acoustic Mode LFZF - Low Frequency Zonal Flow
- Reynolds stress increases approaching the L-H transition
 - Consistent with the observation of the increased LFZF

Large Increases in the Turbulence and Flow Shear Approaching the L-H Transition

Z. Yan/APS-DPP/Oct. 2012

7

SAN DIEGO

Large Increases in the Turbulence and Flow Shear **Approaching the L-H Transition**

Z. Yan/APS-DPP/Oct. 2012

Large Increases in the Turbulence and Flow Shear Approaching the L-H Transition

Increased Turbulent Flow Shear Appears to Trigger the L-H Transition

2D Imaging Showing Stronger Turbulence Eddy Tilting and Stretching

Turbulent eddies are stretched, tilted and torn apart

time

2D Imaging Showing Stronger Turbulence Eddy Tilting and Stretching

- Turbulent eddies become more rigorous, stretched and tilted immediately before L-H transition
 - Consistent with the jump up of the Reynolds stress

dRS/dr (10⁸ m/s²)

Summary

- Density fluctuation amplitudes increase with time and input power approaching the L-H transition
- Inferred Reynolds stress and Reynolds stress gradient increase approaching the L-H transition
 - Turbulence equilibrium poloidal flow changes from GAM dominant to LFZF like dominant approaching the transition
- Immediately before the transition turbulence amplitudes, Reynolds stress gradient and flow shear increase largely
- Taken together, the observations are consistent with the picture that the increased power flux leads to increased turbulence, turbulent Reynolds stress, shear flow development, and a rapid changing edge flow that triggers the transition
- Future work
 - Mean E_r evolution right before L-H transition
 - Macroscopic scaling of L-H transition power threshold and relation to the microscopic turbulence dynamics

