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Effective Disruption + RE Mitigation are Essential for ITER  
 
•   DMS has 5 critical functions: 
  ❶ limit Wth deposit on divertor and first wall surfaces 
  ❷ prevent ‘hot plasma VDEs’  and FW energy deposit 
  ❸ limit halo current forces in blanket/shield modules 
  ❹ control eddy current forces in B/S modules 
  ➎ control and dissipate runaway electron currents 

•   MGI (massive gas injection) identified as    
primary approach; MPI (massive pellet    
injection) as alternate 

•   ITER current and energy introduce R&D needs 

– Control thermal and magnetic energy radiation 

–  Avoid and mitigate runaway electrons 

–  Provide adaptive control, with high reliability                 
and nuclear compatibility 

•   USIPO to provide DMS: physics + technology   
R&D, experiments and modeling critical for   
meeting 2016 FDR milestone 
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Three Critical Issues Constrain the Disruption 
Mitigation Strategy Proposed for ITER   

1) Structural capabilities of the blanket-shield module attachments  
+ VDE avoidance mandate control of the current decay rate 

           ⇒  50-150 ms Ip decay; ≤ 35 ms decay “not allowable”  

2) Rapid radiation of 350 MJ of plasma thermal energy can melt the   
surface of the beryllium first wall   

        ⇒ trad > 0.8 ms*(PF)2 

 3) MGI or MPI strategies that satisfy requirements 1) and 2) likely to    
produce high levels of after-mitigation runaway electron current 

           ⇒ Must have independent RE mitigation capability 

Multiple challenges, constraints and interactions for   
DMS concept selection and deployment 
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Narrow Range of Current Quench Time (tCQ) is Allowed 

• Fover(B/S)  ∝  dIp/dt (actually dBp/
dt) 

• Fhalo(B/S) ∝ ~(dIp/dt)-1 (from VDE) 

• PVV independent of  dIp/dt 

         ⇒ 50 ≤ tCQ ≤ 150 ms 

• “Natural” disruptions (with Be) →  
 tCQ ≥ 150 ms, with major vertical 
 instability + halo currents 

• Number of ≤ 35-ms CQs = “a 
few” (lifetime) 

   B/S attachment fatigue risk!   

• Too-fast or too-slow disruptions + excessive MGI/MPI “shall not occur” 
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High-Z MGI Results Demonstrate CQ “Control” Success, 
Albeit with Residual Variance + Target Sensitivity 

S = poloidal cross-section area; jp = Ip/S 

•   ITER: Will MGI/MPI that satisfies TE mitigation requirements   
also meet CQ control requirement? 
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First Wall Must Accommodate 350 MJ Thermal Energy 
+ 700 MJ Magnetic Energy without Melting 

• Wth/AFW ≅ 0.5 MJ/m2  (uniform)    

• For ‘square’ Prad(t), Be melt at ~20 MJ m-2 s-0.5 

            ⇒   trad  > ≅ 0.8 ms * (PF)2  

• Experiment: Wth radiation peaking factors    
 for MGI    

            1.1 ≤ PF ≤ 5 (poloidal + toroidal) 

• Impurity plume and radiation source       
 dynamics ⇒ need for 3D+t diagnosis   

• NIMROD modeling (Izzo, PI2.00003) suggests   
 MHD may set irreducible peaking factor 

• C-Mod 2-valve expts (Granetz, UO7.00002)      
 beginning to provide validating data 

DIII-D MGI 
imaging 
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MGI Experiments Show Multiple Time Scales and Control 
Challenges for Thermal and Magnetic Energy Radiation 

•   1-ms TE radiation pulse from 
“MHD mixing” of edge-
deposited impurities into core  

•   Preceded by 5-ms “cooling 
phase” radiation; followed by 
10-ms CQ radiation 

•   Mixing onset delay decreases 
with increasing injection, but 
duration doesn’t change much 

•   ITER: Can we “control” TQ onset, 
radiation duration + uniformity? 

•   For FDR, we need a validated 
model for MHD mixing, trad and 
PF(t), for both Wth and Wmag 

JET: data from M. Lehnen et al, 2010 IAEA 
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ITER RE Avoidance and Mitigation Strategies are Based 
on the Same Connor-Hastie Critical Field/Density Theory 

• Runaway growth rate, γI, is  given by 
 
 
 
 
   where  
 
 

   is the Connor-Hastie critical field  
 (drag =  eEc at ~1 MeV)  

• For DIII-D, ITER, etc., γNC ≅ 0.45, hence 

	

       γI(s-1) = 164/lnΛ (E-Ec) ≅ 8 ΔE [V/m]  
 
• Strictly valid only for ΔE ≥ 0 (growth) 

• C-H/Ecrit theory not yet precisely tested;   
 on-going experimental investigations 

     ITER RE Strategies Compared 

     Avoidance  Mitigation 

When:        CQ start     RE start 

E(V/m)          ~20        ~0.5 

ne,20 (RB)       ~200           ~5 

Species            D2        Ne or Ar 

Q (kPa-m3)     ~30           ~5 

m (g)            ~50       ~5-9 

Delivery:       SPI, RDI    MGI 

Initiation:     before TQ  at/after CQ   
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Tests of Candidate ITER RE Avoidance and Mitigation 
Strategies and Technologies are in Progress  

RE mitigation: Ar MGI  

RE avoidance: D2 SPI 
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ITER-Scale Injection Technologies in Development; 
Needed Now to Advance Present-day nRB and RDI Tests 

JET DMV30 fast valve	



• “ITER-size” fast-valve developed for JET    
 [Finken NF51 (2011)]; awaiting test 

• Similar “hardened” valve(s) suitable for ITER      
 TE+CQ mitigation or plateau RE MGI 

• Active quantity and flow rate control required 

• 14-mm D2 SPI (shatter pellet injection) system    
 tested in D-III (~1/3 mRB)    

• 20-mm SPI proposed for ITER:  
   – ~1 neon pellet for TE+CQ mitigation 

   – ~30 D2 pellets for RB-density mitigation 

   – ~ 3 neon pellets for plateau RE mitigation 

• 20-mm RDI cartridges tested on Tore Supra   

• Common issues: reliability + how to implement    
 flexibility and “control” in ITER 
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An Issue-driven Framework Identifies R&D 
Needs for the DMS Final Design Review (2016) 

•   Assimilation + radiation duration/symmetry/control with multi-valve MGI  

•   Achieving super-high densities via D2 SPI and/or D2 RDI 

•   RE + Ecrit physics + rapid dissipation + “ITER-like” control  

•   Integrated model development, validation and application 

Coming soon on the BPO website! 
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Time is Passing… 

•   US/BPO cannot cover all bases; need AUG, C-Mod, JET, TEXTOR, Tore Supra, …. 

•   Test articles and testing with ITER-like magnetic, PFC and impurity     
environments (non-carbon) with high avalanche gain are critical 

•   Opportunities (need!) for domestic + international collaboration and coordination 
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Please contribute! 

Time is Passing… 

•   US/BPO cannot cover all bases; need AUG, C-Mod, JET, TEXTOR, Tore Supra, …. 

•   Test articles and testing with ITER-like magnetic, PFC and impurity     
environments (non-carbon) with high avalanche gain are critical 

•   Opportunities (need!) for domestic + international collaboration and coordination 


