USBPO Disruption Task — Critical Issues and Research Needs for the ITER DMS

ITER (not to same scale)

Disclaimer: Personal opinions, not representative of positions of IO, USDOE, USIPO, USBPO, GA or DIII-D

Effective Disruption + RE Mitigation are Essential for ITER

• DMS has 5 critical functions:

limit W_{th} deposit on divertor and first wall surfaces
prevent 'hot plasma VDEs' and FW energy deposit
limit halo current forces in blanket/shield modules
control eddy current forces in B/S modules
control and dissipate runaway electron currents

- MGI (massive gas injection) identified as primary approach; MPI (massive pellet injection) as alternate
- ITER current and energy introduce R&D needs
 - Control thermal and magnetic energy radiation
 - Avoid and mitigate runaway electrons
 - **Provide adaptive control**, with high reliability and nuclear compatibility
- USIPO to provide DMS: physics + technology R&D, experiments and modeling critical for meeting 2016 FDR milestone

Three Critical Issues Constrain the Disruption Mitigation Strategy Proposed for ITER

1) Structural capabilities of the blanket-shield module attachments + VDE avoidance mandate control of the current decay rate

 \Rightarrow 50-150 ms I_p decay; \leq 35 ms decay "not allowable"

2) **Rapid radiation** of 350 MJ of plasma thermal energy can melt the surface of the beryllium first wall

 \Rightarrow t_{rad} > 0.8 ms*(PF)²

3) MGI or MPI strategies that satisfy requirements 1) and 2) likely to produce high levels of after-mitigation *runaway electron current*

⇒ Must have independent RE mitigation capability

Multiple challenges, constraints and interactions for DMS concept selection and deployment

3

Narrow Range of Current Quench Time (t_{CQ}) is Allowed

- $F_{over}(B/S) \propto dI_p/dt$ (actually dB_p/dt)
- $F_{halo}(B/S) \propto \sim (dI_p/dt)^{-1}$ (from VDE)
- P_{VV} independent of dI_p/dt
 - \Rightarrow 50 \leq $t_{CQ} \leq$ 150 ms
- "Natural" disruptions (with Be) → t_{CQ} ≥ 150 ms, with major vertical instability + halo currents
- Number of ≤ 35-ms CQs = "a few" (lifetime)
 - B/S attachment fatigue risk!

• Too-fast or too-slow disruptions + excessive MGI/MPI "shall not occur"

High-Z MGI Results Demonstrate CQ "Control" Success, Albeit with Residual Variance + Target Sensitivity

S = poloidal cross-section area; $j_p = I_p/S$

• ITER: Will MGI/MPI that satisfies TE mitigation requirements also meet CQ control requirement?

5

First Wall Must Accommodate 350 MJ Thermal Energy + 700 MJ Magnetic Energy without Melting

- $W_{th}/A_{FW} \approx 0.5 \text{ MJ/m}^2$ (uniform)
- For 'square' $P_{rad}(t)$, Be melt at ~20 MJ m⁻² s^{-0.5}

 \Rightarrow $t_{rad} \ge 0.8 \text{ ms} * (PF)^2$

• Experiment: W_{th} radiation peaking factors for MGI

 $1.1 \leq PF \leq 5$ (poloidal + toroidal)

- Impurity plume and radiation source dynamics \Rightarrow need for 3D+t diagnosis
- NIMROD modeling (Izzo, PI2.00003) suggests MHD may set irreducible peaking factor
- C-Mod 2-valve expts (Granetz, UO7.00002) beginning to provide validating data

2050.0 3075.0

4100.0

Radiation of 350 MJ to ITER FW

25

6

imaging

100

150

1100.0

4.0

5.0

MGI Experiments Show Multiple Time Scales and Control Challenges for Thermal and Magnetic Energy Radiation

- 1-ms TE radiation pulse from "MHD mixing" of edgedeposited impurities into core
- Preceded by 5-ms "cooling phase" radiation; followed by 10-ms CQ radiation
- Mixing onset delay decreases with increasing injection, but duration doesn't change much
- ITER: Can we "control" TQ onset, radiation duration + uniformity?
- For FDR, we need a validated model for MHD mixing, t_{rad} and PF(t), for both W_{th} and W_{mag}

JET: data from M. Lehnen et al, 2010 IAEA

ITER RE Avoidance and Mitigation Strategies are Based on the Same Connor-Hastie Critical Field/Density Theory

• Runaway growth rate, γ_I , is given by

$$\frac{1}{I_{RE}}\frac{\partial I_{RE}}{\partial t} = \frac{e}{mc\ln\Lambda}\sqrt{\frac{\pi\gamma_{NC}}{3(Z+5)}} (E-E_c)$$

where

$$E_c = \frac{4\pi e^3 n_e}{mc^2} \ln\Lambda \cong 0.12 n_{e,20} \, [\text{V/m}]$$

is the Connor-Hastie critical field (drag = eE_c at ~1 MeV)

- For DIII-D, ITER, etc., $\gamma_{NC} \cong 0.45$, hence $\gamma_{I}(s^{-1}) = 164/In\Lambda (E-E_{c}) \cong 8 \Delta E [V/m]$
- Strictly valid only for $\Delta E \ge 0$ (growth)
- C-H/E_{crit} theory not yet precisely tested; on-going experimental investigations

ITER RE Strategies Compared

	<u>Avoidance</u>	Mitigation
When:	CQ start	RE start
<i>E</i> (V/m)	~20	~0.5
n _{e,20} (RB)	~200	~5
Species	D_2	Ne or Ar
Q (kPa-m ³)) ~30	~5
m (g)	~50	~5-9
Delivery:	SPI, RDI	MGI
Initiation:	before TQ	at/after CQ

8

Tests of Candidate ITER RE Avoidance and Mitigation Strategies and Technologies are in Progress

ITER-Scale Injection Technologies in Development; Needed Now to Advance Present-day n_{RB} and RDI Tests

- "ITER-size" fast-valve developed for JET [Finken NF<u>51</u> (2011)]; awaiting test
- Similar "hardened" valve(s) suitable for ITER TE+CQ mitigation or plateau RE MGI
- Active quantity and flow rate control required
- 14-mm D₂ SPI (shatter pellet injection) system tested in D-III (~1/3 m_{RB})
- 20-mm SPI proposed for ITER:
 - -~1 neon pellet for TE+CQ mitigation
 - ~30 D₂ pellets for RB-density mitigation
 - -~3 neon pellets for plateau RE mitigation
- 20-mm RDI cartridges tested on Tore Supra
- Common issues: reliability + how to implement flexibility and "control" in ITER

Tore Supra RDI cartridge (~ same scale)

An Issue-driven Framework Identifies R&D Needs for the DMS Final Design Review (2016)

- Assimilation + radiation duration/symmetry/control with multi-valve MGI
- Achieving super-high densities via D₂ SPI and/or D₂ RDI
- RE + E_{crit} physics + rapid dissipation + "ITER-like" control
- Integrated model development, validation and application

Time is Passing...

We are here

- US/BPO cannot cover all bases; need AUG, C-Mod, JET, TEXTOR, Tore Supra,
- Test articles and testing with ITER-like magnetic, PFC and impurity environments (non-carbon) with high avalanche gain are critical
- Opportunities (need!) for domestic + international collaboration and coordination

Time is Passing...

- US/BPO cannot cover all bases; need AUG, C-Mod, JET, TEXTOR, Tore Supra,
- Test articles and testing with ITER-like magnetic, PFC and impurity environments (non-carbon) with high avalanche gain are critical
- Opportunities (need!) for domestic + international collaboration and coordination

