Comparisons of Linear and Nonlinear Plasma Response Models for Non-axisymmetric Perturbations

by A.D. Turnbull

with L.L. Lao (GA), N.M. Ferraro (GA), M.J. Lanctot (GA), V.A. Izzo (UCSD), E.A. Lazarus, (ORNL) Y.Q. Liu (Culham) W.A. Cooper (CRPP) J-K. Park (PPPL)

Presented at the 54th Annual APS Meeting Division of Plasma Physics Providence, Rhode Island

October 29 — November 2, 2012

Acknowledgements: A. Reiman, S. Lazerson (PPPL) S. Hirshman (ORNL)

Understanding Plasma Response to Non-Axisymmetric Perturbations is a Vital Area of Fusion Research

- Plasma response to 3-D perturbations is a major focus of the experimental tokamak program
 - ELM suppression from internal non-axisymmetric coils (DIII-D I-coils)
- Plasma response is a key ingredient in determining the consequences of non-axisymmetric perturbations

Plasma can amplify, suppress or otherwise modify perturbation!

First attempt at comparing and documenting applicability of the predicted detailed internal response from different approaches

- Main goal is to identify the issues limiting each approach
 - Which is right and when is it right (i.e. the experimental plasma response)
 - Answer depends on conditions

There Are Two Key But Interrelated Responses to an External Non-axisymmetric Field

• Equilibrium response

- Magnetic geometry
 - Flux surface displacement
 - Changes in topology
- Changes in profiles responding to force balance
- Transport response due to topology and equilibrium changes
 - Changes in profiles from changed local transport

• Transport response can be thought of as part of nonlinear response

In principle, this can all be captured within an Extended MHD framework

Final state is a new MHD force balance equilibrium

Four Conventional Approaches Are Traditionally Used to Find the Steady State Plasma Response

- Follow time evolution to determine final nonlinear saturated state using Extended MHD stability code
- Perturbed Equilibrium

 Both viewpoints hold for both linear and nonlinear formulations

Find the nearby stable non-axisymmetric equilibrium

Each Approach Has Relative Advantages

	Linear:	Nonlinear:
Dynamic evolution viewpoint:	Forced eigenvalue (MARS-F, M3D-C ¹) Fast turn around Valid only for sufficiently small response	3D Extended MHD stability (NIMROD, M3D, M3D-C ¹) Requires complete physics and realistic parameters Time consuming
Nearby equilibrium viewpoint:	Basis expansion (IPEC) Fast turn around Valid only for sufficiently small response	Nearby equilibrium (VMEC, PIES, HINT, SPEC, SIESTA) Faster turn around Computed state may not be physically accessed

 Each approach has significant past success in predicting external magnetic response

Different Approaches Bring Complementary Insights for Predicting Detailed Internal Responses

- All four approaches have yielded past successes
- Comparison of predictions of internal plasma response to I-coil perturbations in DIII-D
- Resolution of discrepancies
- Magnetic helicity as a constraint
- Conclusions

M3D-C¹ Predicts Observed Pedestal Temperature and Oscillation of Edge Thomson Location With I-coil Phasing

 Edge location inferred from Thomson oscillates in phase with n = 3 l-coil current in DIII-D

• M3D-C¹ includes linear plasma response

MARS-F Calculations of Ideal Plasma Response Agree With Measured Response in DIII-D at Sufficiently Low β

• Amplitude and phase agree for $\beta_N < 1.8$

(Lanctot Phys. Plasmas 2011)

- Disagreement for $\beta_N > 1.8$
 - Ideal model over-estimates response just below no wall limit
 - No agreement above no-wall limit

DIII-D Discharge #142603 Provides Well Documented Case for Comparing Response Predictions

How well can the different approaches predict detailed response?
 ⇒ Compare the predictions against each other

Linear Response Calculated for DIII-D Discharge #142603 Including Plasma Rotation Using MARS-F

MARS-F is a linear eigenvalue code modified to find the response due to an inhomogeneous forcing function representing an external field

$$\omega_{\xi}^{\ddot{\xi}} + L\xi = \omega^{2}\xi + L\xi = 0 \quad \Rightarrow \quad \omega_{0}^{2}\xi + L\xi = F$$

MARS-F, M3D-C¹ and IPEC Predict Qualitatively Similar Linear Responses With Significant Inboard Oscillations

Oscillations follow

$$\xi \sim \xi_0 e^{im\chi_{pol}}$$

with
$$m \sim nq - 1$$

oscillations down the inboard side and one or two large oscillations on outboard side

(Kink-like response)

Scaled displacements factor 56

MARS-F

Nonlinear VMEC Response is Significantly Different from Ideal Linear Response Especially on the Inboard Side

- Equilibrium calculation with non-axisymmetric I-coil fields
- Profiles taken from reconstructed 2-D equilibrium
- Inboard response is quite different from linear ideal response predictions
- Oscillations do not follow

 $\xi \sim \xi_0 e^{im\chi_{pol}}$

(Non kink-like response)

 Similar disagreement for non-resonant surfaces

Scaled displacements

n=3

q=8.0/3

Possible Sources for Discrepancy Can be Identified in Each Approach

Linear Dynamic Approach

- Response depends on what physics is included in dynamic evolution
 - Response is sensitive to marginal "near internal" eigenmodes
- Linear model can break down for finite perturbations
 - Response can be large even when applied external field is small

Nonlinear Dynamic Evolution Approach

• Physics required to obtain saturated state is case dependent

Nonlinear Perturbed Equilibrium Approach

- Convergence issues arise for resolving singular currents or islands
- Equilibrium code can find the "wrong" equilibrium
 - Constraints imposed to define new equilibrium may be inappropriate

LinearSmall Boundary Distortions Can Excite Near-DynamicInternal Modes That Dominate the Response

- Nominally internal normal modes like the 1/1 kink have some small boundary perturbation if the wall is removed
 Lazarus IAEA 2012
 - Conversely a small imposed boundary perturbation can excite these normal modes yielding a large internal response
- In practice these may or may not be suppressed by non-ideal effects

This has even more serious implications for nonlinear dynamic evolution approach

Linear Criterion for Flux Surface Crossing Shows Break Dynamic Down of Linear Model for Finite Displacements

 Extensive crossings occur on inboard side and very edge

NonlinearNonlinearDynamicApproachRequiresDynamicCorrect SaturationPhysics for SteadyState

• Required saturation physics is case dependent

- Saturation mechanism needed for each normal mode in response
- Internal mode appearing in linear MARS-F calculation for 142603 is also present in the M3D-C¹ nonlinear evolution
 - Nonlinear run failed to reach steady state as the required saturation mechanism for the 3/3 core mode is not correct
- Near steady state can be obtained in some cases
 - 3/3 mode not present for discharge #126006
 - Approximate steady state reached early
 - Nonlinear mode appears to grow later in the evolution

Nonlinear evolution Poincare Plot

#126006

Final state before mode grows looks qualitatively like the linear result

Perturbed Perturbed Equilibrium Approach Requires Equilibrium Constraints to Guarantee State is Accessible

- Multiple nearby 3-D equilibria typically exist Cooper IAEA 2012
 - How can the unique accessible state be selected ?
- Need constraints or invariants relating initial axisymmetric state with the unique nearby final non-axisymmetric state
- Imposed constraints need to account for topological transformations but restrict physically inaccessible changes

Perturbed Require Constraints Relating Initial 2-D System Equilibrium With Dynamically Accessed 3-D Equilibrium

- Different 3-D equilibrium codes invoke different implicit constraints
 - VMEC imposes nested surfaces but not stellarator symmetry
 - PIES, SIESTA, SPEC currently impose stellarator symmetry

None are necessarily the constraints exhibited by the actual dynamics

- Equilibrium codes require specification of two independent functions
 - $-s_1(\psi) = p(\psi)$ (pressure) or $s_1(\psi) = dp(\psi)/d\psi$
 - $-s_2(\psi) = \iota(\psi)$ (rotational transform) or equivalently current density
 - For 2-D equilibria these are measured routinely
- In absence of 3-D reconstruction Require a relation between 2-D profiles and the subsequent dynamically accessible profiles in the 3-D state

 i.e. a set of "constraints"
- Simplest and most convenient approach is to set profiles for 3-D same as measured initial 2-D profiles

Perturbed There is No Guarantee The Simple Approach Equilibrium Yields Dynamically Accessed State

• Ambiguity exists even if profiles are set to be the same as in 2-D state

- Should ψ be taken as the poloidal flux Ψ or toroidal flux Φ ?

• Changes in local or global transport may also modify pressure profile

- \Rightarrow Profiles can change as response to perturbation ("transport response")
- ⇒ Density pumpout is usually observed in experiments
- Islands produce new regions where profiles need to be specified
- In 3-D with non-nested surfaces $p = p(\psi, \Gamma_i)$, where Γ_i represents a simply connected region isolated from other regions by a separatrix
 - In the intact region
 - Specify $p(\psi)$ as in the 2-D equilibrium or
 - Evolve $p(\psi)$ via 1½-D transport
 - Within new island regions, Γ_i , assumptions need to be imposed on $p(\psi, \Gamma_i)$

How should the current density profile be determined?

Keeping ι(ψ) or q(ψ) fixed from the initial 2-D state implies no topological changes: ⇒ Only ideal motions are allowed

Specifying Magnetic Helicity Has Advantages as a **Constraint to be Imposed on Current Profile**

Magnetic helicity is also conserved by ideal motions for every flux surface ψ A =Vector potential $K(\psi) = \int_{\psi_0}^{\psi} \oiint A \bullet B \, d\tau$

 $B = \nabla \times A$

Magnetic helicity is sum over pairs of linked flux tubes $K = \sum l_{ii} \Phi_i \Phi_i$

Linking number can change when islands or stochastic regions form

 Φ_{tor}

 \Rightarrow A set of annular helicities can be defined between flux surfaces ψ_{y}

$$M_{\nu} = M(\psi_{\nu}, \psi_{\nu+1}) = \int_{\psi_{\nu}}^{\psi_{\nu+1}} \oiint A \cdot B \, d\tau \quad (\nu = 0, 1, 2, ..., N)$$

 $\psi_{\nu+1}$

A Finite Set of Helicity Integrals Between KAM Surfaces is Expected to be Conserved Up to a Constant

- Intuitively expect annular helicity changes around newly formed islands and unchanged in the intact flux surface regions
- ⇒ Helicity profile is expected to undergo jumps with constant offset from each island region

This can be tested in a dynamic simulation from an extended MHD code

SPEC code (S. Hudson) specifies helicity in discrete regions

NIMROD Calculation Shows Approximately Expected **Behavior for Annular Helicities**

 3/2 island region shows up clearly in helicity profile Instability generated perturbation

A.D. Turnbull/APS-DPP/Oct. 2012

Linear and Nonlinear Calculations for DIII-D discharge #142603 Yield Qualitatively Different Responses

Linear model predictions agree semi-quantitatively but
 Linear models break down for finite perturbations if surfaces cross

Surprise is that linear theory breaks down at the level of 10⁻³ perturbations

- Local breakdown of ideal model can be predicted
- Nonlinear dynamic approach is time consuming and requires all essential physics to obtain correct saturation
 - Calculations so far suggest final state is similar to linear response
- Nearby equilibrium approach can find the right final state in principle if constraints are imposed
 - Hypothesis of "invariant" annular helicity appears to be approximately right but requires further work

