Test Blanket Module Mockup Experiments in DIII-D

by

E.J. Strait

with N.H. Brooks, R.J. Buttery, R.J. La Haye, M.J. Schaffer, H. Reimerdes¹, J.A. Snipes², J.M. Hanson³, W.W. Heidbrink⁴, Y. Zhu⁴, Y. In⁵, G.J. Kramer⁶, M. Okabayashi⁶, J.K. Park⁶, W.M. Solomon⁶, A.G. McLean⁷, N. Oyama⁸, and T. Tala⁹

How Will the Magnetization of the Test Blanket Modules Affect ITER's Performance?

• DIII-D experiments test the effects of a localized error field on energy confinement, fast ion confinement, ...

- TBM "mockup" coils approximate the magnetization of two ITER TBMs in one ITER port
- Matches ITER TBM's far field well
- Mockup is capable of $\sim 3x$ ITER's $\triangle B/B_0$
 - Approximate the total amplitude of ITER's 3 TBM ports

Direct Measurement of Local Heat Loads at the TBM Allows Benchmarking of of Fast Ion Loss Models for ITER

- Infrared imaging measures fast ion heat loads with:
 - Co and counter NBI
 - "Parallel" and "perpendicular" NBI
- Compare to simulations of fast-ion loss caused by 3D fields:
 - ASCOT & SPIRAL full gyro-orbit codes
 - OFMC guiding center code
- Codes agree well on location of heat deposition and peak heat loads

G.J. Kramer: APS poster GP8.00097 IAEA 2012 (ITR/P1–32)

New Experiments Test the Correction of TBM Error Field in H-mode Plasma

- Previous experiments (2009) found that the TBM field reduced
 - Plasma rotation
 - Energy and particle confinement
 - Error field tolerance in L- and H-mode
- n=1 correction of TBM error field in <u>Ohmic</u> plasmas successfully restored the locked mode resistance
- <u>2011 experiments</u>:

test n=1 correction of the TBM error for <u>H-mode</u> plasmas

H. Reimerdes, IAEA 2012 (EX/P4–09)

Non-disruptive Technique Optimizes Error Field Correction by Maximizing the Plasma Rotation

Vary correction field n=1 amplitude and phase

Represent amplitude and toroidal phase of coil currents as vector in the x-y plane

Non-disruptive Technique Optimizes Error Field **Correction by Maximizing the Angular Momentum**

Vary correction field n=1 amplitude and phase

6

n=1 Error Field Correction Achieves Only Partial Recovery of Momentum Confinement Degradation

- TBM magnetic field error reduces rotation by ~20%
 - In rapidly rotating ELMy H-mode
- n=1 error field correction recovers at best only a small fraction (~¹/₄) of the rotation loss

Alternative Strategy: Minimize the n=1 Kink-resonant Response

• Minimize the n=1 "resonant field amplification"

lacksquare

Two Methods of Optimizing n=1 Error Field Correction Are in Reasonable Agreement

- Minimize the braking of plasma rotation
- Minimize the n=1 magnetic response of the plasma
- IPEC model prediction agrees on the toroidal phase
 - Amplitude is within a factor
 ~2 of experimental values

RE n=1 upper I-coil current (kA)

 The small difference between the two minimizations may be a consequence of non-resonant braking

TBM Has a Broad, Non-resonant Spectrum

 Toroidal mode spectrum peaks at n≈10

 n=1 kink mode-resonant components are small

→ Full correction may require multiple n or local correction coils

TBM Results Suggest a Significant Non-resonant Contribution to Braking of Rotation

• Simple model for braking torque of error field B_E and correction field B_C :

$$T = (a_{K}B_{E} - b_{K}B_{C})^{2} + a_{NR}^{2}B_{E}^{2} + b_{NR}^{2}B_{C}^{2}$$

Kink-resonant
(n=1)
contribution

• Non-resonant terms prevent complete cancellation of error field braking

TBM Results Suggest a Significant Non-resonant Contribution to Braking of Rotation

$$T = (a_{K}B_{E} - b_{K}B_{C})^{2} + a_{NR}^{2}B_{E}^{2} + b_{NR}^{2}B_{C}^{2}$$

Kink-resonant
(n=1) Non-resonant
contributions

• Non-resonant terms prevent complete cancellation of error field braking

contribution

- Minimum braking requires smaller correction field than minimum kink resonance
 - Consistent with TBM experiment?

TBM Results Suggest a Significant Non-resonant Contribution to Braking of Rotation

• Simple model for braking torque of error field B_E and correction field B_C :

$$T = (a_{K}B_{E} - b_{K}B_{C})^{2} + a_{NR}^{2}B_{E}^{2} + b_{NR}^{2}B_{C}^{2}$$

Kink-resonant
(n=1)
contribution

Fit TBM results to this model:

- Correction field has moderate non-resonant braking ratio: b_{NR}/b_K ~ 0.5
- TBM error field has larger non-resonant braking ratio: a_{NR}/a_K ~ 2

Summary

- DIII-D results suggest an important role of magnetic braking by n >1 and/or non-resonant fields (in H-mode plasmas)
- Compensation by n=1 fields alone may have limited effect against TBM-induced braking of ITER plasmas with rotation
 - But n=1 compensation is still important for avoiding resonant error field penetration at low rotation

