An Experimental Comparison of Gross and Net Erosion of Mo in the DIII-D Divertor

by P.C. Stangeby

with thanks to co-workers D.L. Rudakov, W.R. Wampler, J.N. Brooks, N.H. Brooks, D.A. Buchenauer, J.D. Elder, A.Hassanein, A.W. Leonard, A.G. McLean, A. Okamoto, T. Sizyuk , J.G. Watkins, D.G. Whyte and C.P.C. Wong

> Presented at the 54th Meeting of the APS Division of Plasma Physics Providence, Rhode Island

October 29 — November 2, 2012

University of Toronto Institute for Aerospace Studies

Summary: Net Erosion of Molybdenum in DIII-D Divertor is Reduced Compared to Gross Erosion

- Net erosion = gross erosion deposition
- ITER, FNSF require that target effective i.e. net erosion be very small
- Net erosion of high-Z material in a divertor should be reduced cf gross erosion due to prompt local redeposition but existing experimental evidence is inconsistent, calling for a definitive test
- Experiments on erosion of Mo under stable welldiagnosed plasma conditions were conducted in DIII-D

DiMES head

- Net erosion is reduced by ~x2 compared to gross erosion for a 1 cm diameter Mo sample under attached L-mode plasma conditions
- Result in good agreement with simple estimates and code modeling
- Good news for ITER, FNSF but more work to be done

Gross Erosion Rates in Future Devices will be Enormous but Net Erosion is What Matters

device	P _{heat} [MW]	annual run time [s/year]	E ^{year} [TJ/yr] (ktonT	NT/yr)	carbon gross erosion rate [ton/yr]	tungsten gross erosion rate [ton/yr]
DIII-D	20	10^{4}	0.2	(0.05)	0.0005	0.0007
EAST	24	10^{5}	2.4	(0.6)	0.005	0.008
ITER	100	10^{6}	100	(24)	0.3	0.4
FNSF	100	10^{7}	1000	(240)	2	3
Reactor	400	$2.5 \text{x} 10^7$	10000	(2400)	23	35

1 kton TNT = 4.1 TJ

- Present \rightarrow future tokamaks $E_{load}^{year} \uparrow 10^5 X$
- Annual gross erosion $\propto E_{load}^{year} \rightarrow 10 \text{ m/yr}$ (targets)
- Must be avoided. One way: make net << gross erosion
- Should happed (prompt local deposition) but experimental evidence inconsistent
- A definitive test needed

Prompt Deposition During the First Gyro-orbit of the Newly Ionized Sputtered Neutral

When $\lambda_{iz}^{o} \sim \rho_{z^{+}}$ (as shown) then the impurity ion may return to the target during the first Larmor orbit. Examples 2 and 3 do so here When $\lambda_{iz}^{o} < \rho_{z^{+}}$ (not shown) then all impurity ions return

P.C. Stangeby/APS-DPP/Oct. 2012

Fast Deposition Due to the Strong E-field in the Magnetic Pre-sheath (MPS) and Friction with Fast Plasma Flow

For Tungsten, Prompt Deposition Should be Effective in DT Devices Via Both Strong MPS Forces and Short $\rho_w\text{-}Effect$

ITER outer strike-point conditions: $n = 10^{21} \text{ m}^{-3}$, B = 5T

For Carbon, Prompt Deposition Should Also be Effective Due to Strong MPS Forces (but Only Marginally Via Short ρ_{c} -Effect)

However, a Puzzling Result from C-Mod: for Mo at OSP, Net Erosion ~Gross Erosion, Apparently

- Although the theoretical ideas here are basic and while there is also evidence for their validity
- ...in C-Mod measured net erosion of Mo ~ order of magnitude larger than expected from simple estimates and also code modeling
- The C-Mod measurements were campaignintegrated, making them difficult to interpret
- Exposure conditions are required using well characterized, repeat discharges only, to provide the interpretable data needed for a definitive test of the relation between net and gross erosion

In DIII-D Such a Test has been Carried Out of Net vs Gross Erosion

- DiMES was used to expose thin Mo film samples to repeat, well-controlled, well-characterized, low density shots. L-mode, no ELMs. Attached
- Strike point moved onto DiMES for 4 s flat top only
- ~15 nm Mo film on Si substrate, set flush in 5 cm diameter graphite DiMES head. 1 cm and 1 mm diam Mo samples

DiMES head

- **RBS**^{*} measured change in thickness of 1 cm sample \rightarrow net erosion
- RBS^{*} measured change in thickness of 1 mm sample → gross erosion
- Gross erosion also measured spectroscopically (Mol line at 386 nm)

*RBS: Rutherford Backscattering ex situ surface analysis

For 1 cm Diam Mo Sample, Prompt Deposition Should be Effective for Low Density SAPP Conditions at the OSP in DIII-D

Sputtering by C ions $n = 1.5 \times 10^{19} \text{ m}^{-3}$, B = 2T

- However, for a small (1 mm) diam Mo sample, WBC/REDEP code gives only 5% redeposition, thus net ~ gross for small Mo sample
- Provides a nonspectroscopic way to measure gross erosion

We Did Three Experiments

Experiment	Exposure time (s)	Probe data. T _e -max (eV), n _e -max (10 ¹⁹ m ⁻³)	Mol filter passband (nm)	With 1 mm sample
Sample # 1	28	30, 1.5	10	no
Sample # 2	12	no data	1	no
Sample # 3	4	40, 1.2	1	yes

Plasma Conditions ~ Constant Across the DiMES Mo Sample

Profiles for Sample # 1

Mol Light Observed by CCD Camera

Shot number 145673

DiMES TV, looking down in lower divertor, Mol filter 390 nm, frame rate 5 Hz, integration time 50 ms

Β_T

R

Courtesy of N. Brooks

P.C. Stangeby/APS-DPP/Oct. 2012

(a) image of the sample taken during the exposure by a CCD camera with Mol 390 nm filter (10 nm passband)

(b) post-exposure photograph of the DiMES holder with Mo sample

Mo was Net Eroded from 1 cm Sample and was Deposited on Surrounding Graphite Surface

- Sample # 1
- Top. RBS measurements of net erosion of Mo from the 1 cm sample
- Bottom. Mo deposition on the graphite holder measured by RBS

For Sample # 3 (1 shot, 4 s exposure):

• **RBS** net/gross erosion:

0.53 <u>+</u> 12%

• Compares well with code net/gross ratio: 0.46

Gross erosion rate: 1.4 nm/s

DiMES head

Gross Erosion Rate Also Measured Spectroscopically

- An absolutely calibrated CCD camera with Mol filter centered at 386 nm, bandwidth 1 nm, was used to measure the gross erosion rate
- Used S/XB ~ 1 photon efficiency measured by Nishijima et al in PISCES. 1 Mol photon ~1 Mo atom sputtered

• Factor of 2 uncertainty:

- Transmission of 1 nm filter
- Transmission of 2nd filter to block D-alpha
- Transmission of vacuum window
- Light reflection from Mo surface
- Correction for 380, 390 nm Mol lines not passed by filter

Narrow Pass Filter Needed to Isolate Mol Line at 386 nm

N.H. Brooks and A.G. McLean

Spectroscopic Measurement of Gross Erosion Rate Agreed with RBS Rate

- For Sample# 3 spectroscopic measurement of gross erosion rate: 2.45 nm/s
- Compare with RBS-measured gross erosion rate in same expt: 1.4 nm/s
- Agreement is within the uncertainty of the spectroscopic method, factor <u>+</u> 2

Evidence for Both Local Deposition and Long Range Transport of Mo Sputtered from 1 cm Sample

- RBS found only 19% of the Mo lost from the 1 cm sample, on the surrounding graphite DiMES surface
- WBC/REDEP/ITMC calculation gave 13%. Long range migration is due to multiple step erosion of Mo on C surface

Computer Code Modeling

- Langmuir probe data input to OEDGE code to generate a 2D plasma solution
- The latter then input to the REDEP/WBC/ITMC erosion/redeposition code coupled to the ITMC-DYN mixed-material code for resputtering of Mo deposited on the C surface
- WBC computes the 3-D, sub-gyro-orbit, full-kinetic motion of sputtered atoms/ions, subject to the Lorentz force motion, and velocity-changing and charge-changing collisions with the plasma

The Monte Carlo WBC/REDEP/ITMC Code Finds Significant Local Deposition but Also Long-range Transport

Mo Deposition Pattern on Graphite Surface Matched Fairly well by WBC/REDEP/ITMC Code Simulation

Conclusions and Future Work

- For the specific divertor plasma condition tested, measured net/ gross erosion agrees with the "standard" idea of prompt, local re-deposition
- Positive implications for reduction of net erosion for high-Z in ITER, FNSF
- There is also long range transport of some ions, evidently a mixed materials effect
- A new, non-spectroscopic method for measuring gross erosion rates has been demonstrated
- Future studies: use W; AI (proxy for Be). For the weakly-ionizing plasma used here, net erosion was only slightly < gross erosion; in future studies stronger-ionizing plasmas will be used

