Edge Soft X-Ray Imaging Measurements of 3D Plasma Response to Resonant Magnetic Perturbations

by

M.W. Shafer¹, E.A. Unterberg¹, A. Wingen¹, N.M. Ferraro², D.J. Battaglia³, T.E. Evans², J.H. Harris¹, D.L. Hillis¹, R. Nazikian³, D.M. Orlov⁵

¹ORNL, ²GA, ³PPPL, ⁵UCSD

Presented at the 54th Annual APS Meeting Division of Plasma Physics Providence, Rhode Island

October 29 — November 2, 2012

- Models predict varying responses:
 - Vacuum (TRIP3D): stochastic layer/ split manifolds
 - <u>Two-fluid resistive MHD (M3D-C1)</u>: partial resonant screening + non-resonant amplification, key: $\omega_{e,\perp}$
- New diagnostic: Tangential pinhole SXR Camera near X-point
 - Energy filters allows for radial discrimination
- Forward modeling with synthetic diagnostic used to compare models to data
 - Lobes extending from the unperturbed separatrix at plasma boundary agrees well with vacuum
 - Helical displacements in the steep-gradient region inside the unperturbed separatrix: better agreement with M3D-C1

Pinhole SXR Camera Exploits Flux Expansion at X-Point

Different Metallic Filters Provide Radial Discrimination

- 1. SXR: $E_{c,10\%} \sim 500 \text{ eV} \rightarrow \text{steep gradient region}$
- 2. USXR: $E_{c,10\%} \sim 40 eV \rightarrow extended to Edge/SOL$
- CHIANTI* astro code simulates spectrum
 - Uses n_e, T_e, n_z to model SXR/USXR profile

Views with Different Filters Access Pedestal to Divertor

n=3 RMP Phase Modulation Used to Isolate Response

 Standard DIII-D RMP ELM-suppression plasmas with alternating n=3 phases by 60 degrees

Out-of-Phase Differential Images Isolate Response

Out-of-Phase Differential Images Isolate Response

<u>Synthetic Diagnostic</u> — Vacuum and Two-Fluid Resistive MHD Response Forward Modeled to SXR/USXR

Vacuum: TRIP3D-MAFOT

- <u>Predicts</u>: lobes / islands / stochastic regions

- Two-fluid resistive linear MHD: M3D-C1
 - <u>Predicts</u>: interplay of islands / screening / kinks

• Under development, ideal MHD: IPEC

<u>Synthetic Diagnostic</u> — Vacuum and Two-Fluid Resistive MHD Response Forward Modeled to SXR/USXR

• Vacuum: TRIP3D-MAFOT

- Predicts: lobes / islands / stochastic regions
- <u>Synthetic model</u>: Assume emission constant on 3D field line
 - Map 1D profile in 3D based on $\psi_{
 m n,min}$ of FL

- Two-fluid resistive linear MHD: M3D-C1
 - Predicts: interplay of islands / screening / kinks

• Under development, ideal MHD: IPEC

Modeled Displacements

<u>Synthetic Diagnostic</u> — Vacuum and Two-Fluid Resistive MHD Response Forward Modeled to SXR/USXR

Vacuum: TRIP3D-MAFOT

- Predicts: lobes / islands / stochastic regions
- <u>Synthetic model</u>: Assume emission constant on 3D field line
 - Map 1D profile in 3D based on $\psi_{
 m n,min}$ of FL

- Two-fluid resistive linear MHD: M3D-C1
 - Predicts: interplay of islands / kinks / screening
 - Synthetic model: Perturbed 3D fluid quantities
 - $n_e, T_e \Rightarrow 3D SXR$, Apply Filter
 - Assume n_z ~ n_e

Modeled Displacements

Data/Model Comparison (USXR) — Vacuum-Predicted Lobes Observed in Data

- Synthetic diagnostic modeling used to identify lobe structures in measurement*
 - Well matched features: gross lobe structure, line-integral effects
- Linear M3D-C1: T_e and n_e still too low in lobes for USXR modeling

Line-Integrated Differential Images

Data/Model Comparison (SXR) — Measured Helical Displacements Match Well to M3D-C1 Calculations

- Helical bands seen in both line-integrated data and modeled images
 - High contrast results from displacement of steep gradient

Line-Integrated Differential Images

Data/Model Comparison (SXR) — Measured Helical Displacements Match Well to M3D-C1 Calculations

- Helical bands seen in both line-integrated data and modeled images
 - High contrast results from displacement of steep gradient

M.W. Shafer/APS-DPP/Oct. 2012

Direct Image Inversion Used for Local Comparison

- Inversion provides direct measure of ~5-10 cm displacements
 - New capability (on-going testing)
- Predicted M3D-C1 displacement has reasonable agreement
- Vacuum shows smaller internal structure, lobe intensity too high

Summary — Unique New Measurements of Plasma Response

- Tangential Imaging of USXR and SXR provide radial discrimination of plasma response in RMP ELM-suppressed plasmas
- Helical displacements measured inside unperturbed separatrix
 - Two-fluid M3D-C1 predicts strong edge perturbation consisting of partial resonant screening + non-resonant amplification with reasonable match to data
 - Vacuum indicates smaller, detailed internal structure
- Boundary structure compare well to Vacuum-predicted lobes
 - M3D-C1 under predicts lobe emission, may need nonlinear simulations
- Future: Targeting pedestal top with higher energy filters

