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Fundamental Behavior of Drift Wave Turbulent 
Transport is Tested Using Heat Pulse Propagation 

•  Carefully constructed experiment 
directly probes diffusive transport 
to test key predicted behaviors: 

–  Instability threshold in ∇Te 

–  Electron transport stiffness 

•  Off-axis ECH varies electron heat 
flux to scan ∇Te over large range 

–  Moved one gyrotron from outside 
to inside on shot-to-shot basis 

•  Modulated one gyrotron 
(outside) for measurement of 
heat pulse propagation 

CC Petty/APS-DPP/2012 



3 

•  Multiple harmonics of Te oscillations are simultaneously fit 
to determine DHP, VHP, τHP 

Modulation in Electron Temperature Profile is Fitted to 
Linearized Energy Conservation Equation 

•  Fourier-transformed first-order equation: 
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•  This talk focuses on the relation between the “heat pulse” 
and “power balance” diffusivities: 

Heat Pulse Propagation is a Good Test of Transport 
Stiffness Models 
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The “Heat Pulse” Diffusivity at ρ = 0.6 Rapidly Increases 
for -∇Te > 3.2 keV/m － Critical Gradient Threshold? 

•  Key analysis step is to 
determine the “power 
balance” diffusivity by 
numerical integration 
of the measured “heat 
pulse” diffusivity: 

•  This yields the purely 
diffusive portion of the 
equilibrium heat flux 
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Diffusive Heat Flux Falls Short of Total Heat Flux from 
Power Balance － Indicating Something is Missing 

•  Diffusive heat flux is 

•  The difference between 
the heat fluxes can be 
reconciled by a non-
zero “power balance” 
convective velocity 
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The “Power Balance” Diffusivity Increases Rapidly 
Above -∇Tcrit While Convection is Mainly Outwards 
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Measured Stiffness Factor Jumps Up ~4 Times When 
-∇Te/Te Exceeds Critical Value 
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Measured Stiffness Factor Jumps Up ~4 Times When 
-∇Te/Te Exceeds Critical Value 
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Measured Stiffness Factor Jumps Up ~4 Times When 
-∇Te/Te Exceeds Critical Value 
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Critical Gradient and Stiffness Factor from Nonlinear 
GYRO Simulations Agree With Experiment 

•  Comparison of ECH + co-
NBI case 

•  GYRO stiffness factor 
determined using total 
heat flux 
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The “Minimal” Critical Gradient Transport Model by 
Garbet Can Be Tested Against DIII-D Data 

•  Simple transport model that preserves some basic properties 
of turbulent transport 

•  Main hypothesis is gyroBohm-like turbulent transport that is 
switched on above a threshold κcrit = –R∇Tcrit/T 

! Note that there is no convective term 

•  χs and χ0 are dimensionless coefficients to be fitted to data 

–  χs is the “effective stiffness factor” 
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Diffusion Coefficients Exhibit Expected Behavior for 
Transport Switched On Above a Critical Gradient 
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Experiment: Lcrit
-1 = 3.7 m-1 

 

TGLF Transport Model has Similar Effective Stiffness Factor 
as Experiment But Predicts a Lower Critical Gradient 

•  Comparison of ECH-only 
case 

•  TGLF diffusion coefficient 
determined using total 
heat flux 
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Conclusions 

•  We have developed a new method to look directly at diffusive 
behavior by combining heat pulse propagation and power 
balance analysis 

•  In L-mode plasmas with off-axis ECH, a critical value of ∇Te is 
observed, above which there is a sudden increase (~4×) in the 
electron transport stiffness 

•  Predicted electron transport stiffness and critical ∇Te from 
GYRO and TGLF are in good agreement (≈10%) with 
experiment 

–  Will extend this study to H-mode plasmas 
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