Energetic Ion Transport and Neutral Beam Current Drive Reduction due to Microturbulence in Tokamaks

by

¹General Atomics, ²University of Texas-Austin, ³University of California-San Diego, ⁴Princeton Plasma Physics Laboratory, ⁵University of California-Irvine, ⁶University of California-Los Angeles, ⁷Lawrence Livermore National Laboratory, ⁸Max-Planck Institut für Plasma Physik, ⁹University of Wisconsin-Madison, ¹⁰Oak Ridge National Laboratory, ¹¹Japan Atomic Energy Agency, ¹²Massachusetts Institute of Technology

Presented at the
54th Annual APS Meeting
Division of Plasma Physics
Providence, Rhode Island

October 29 — November 2, 2012
Concern for Turbulent Transport of Energetic Ions in ITER has Fluctuated Over Time

- **TFTR**: beam ion and fusion product transport is classical through slowing-down, except for MHD and ripple effects (Zweben, NF 1991; Ruskov, NF 1995; McKee, NF 1997)

- **DIII-D**: record $\beta_\phi = 11\%$ shot demonstrated fusion product confinement most sensitive to MHD (Duong, NF 1993)
Concern for Turbulent Transport of Energetic Ions in ITER has Fluctuated Over Time

Energetic Ion Transport by Microturbulence

Insignificant Significant

Theory: fusion α-particles and beam ions experience enhanced diffusion due to microturbulence in present day and ITER regimes (Estrada-Mila, POP 2006; Hauff, PRL 2009; Albergante, NF 2010)

Energetic ion diffusivity due to microturbulence

$$D_B \sim C \left(\frac{T}{E} \right)^\gamma$$
Concern for Turbulent Transport of Energetic Ions in ITER has Fluctuated Over Time

ASDEX Upgrade & DIII-D: current drive from off-axis NBI is lower than predicted, evidence for beam ion diffusion due to microturbulence (Günter, NF 2007; Heidbrink, PRL 2009)
Concern for Turbulent Transport of Energetic Ions in ITER has Fluctuated Over Time

Energetic Ion Transport by Microturbulence

- **Theory**: advanced computation of D_B from quasilinear ratio

\[
D_B = \left(\frac{D_{EI}}{\chi_i} \right)_{\text{theory}} \chi_i,_{\text{exp}}
\]

- **Experiment**: DIII-D experiments and modeling indicate that energetic ion transport due to microturbulence is negligible
Extensive Experimental and Computational Study Finds that Microturbulence is an Insignificant Contributor to Energetic Ion Transport

- Measured radial profiles of NBCD are well described by theory, neglecting turbulent transport, in high-performance plasmas

- Energetic ion transport is classical in well-documented, turbulent plasmas

- New modeling tools allow for predicting energetic ion diffusion due to microturbulence
 - TGLF/DEP: calculates energetic ion turbulent diffusivity, \(D_B = D_B(E, v_{||}/v, R, t) \)
 - NUBEAM: applies \(D_B \) to beam ions

Neutral Beam Current Drive

J.M. Park, IAEA 2012
Fast Ion Spectroscopy

Extensive Experimental and Computational Study Finds that Microturbulence is an Insignificant Contributor to Energetic Ion Transport

- Measured radial profiles of NBCD are well described by theory, neglecting turbulent transport, in high-performance plasmas

- Energetic ion transport is classical in well-documented, turbulent plasmas

- New modeling tools allow for predicting energetic ion diffusion due to microturbulence
 - TGLF/DEP: calculates energetic ion turbulent diffusivity, $D_B = D_B(E, v_\parallel/v, R, t)$
 - NUBEAM: applies D_B to beam ions
Extensive Experimental and Computational Study Finds that Microturbulence is an Insignificant Contributor to Energetic Ion Transport

- Measured radial profiles of NBCD are well described by theory, neglecting turbulent transport, in high-performance plasmas

- Energetic ion transport is classical in well-documented, turbulent plasmas

- New modeling tools allow for predicting energetic ion diffusion due to microturbulence
 - TGLF/DEP: calculates energetic ion turbulent diffusivity, $D_B = D_B(E, v_\parallel/v, R, t)$
 - NUBEAM: applies D_B to beam ions
Classical Energetic Ion Transport is Documented in Turbulent Plasmas During On-axis or Off-axis Beam Injection

- Off-axis beam injection and fast ion diagnostics in DIII-D

- Experimental results and comparisons with modeling
 - Off-axis NBCD in DIII-D: turbulent, L-mode plasmas
 - On-axis neutral beam injection in DIII-D
 - ASDEX Upgrade: comparisons with on- and off-axis neutral beam injection
Vertically Steerable Neutral Beam Provides 5 MW of Off-axis Injection into DIII-D Plasmas

Murphy, et al., SOFE 2011

Adapted from Heidbrink, et al., *NF 52*, 095004 (2012)
Experimentally Determined Profiles of NBCD Require High-Quality Motional Stark Effect Measurements and Equilibria

- Experimental beam driven current profiles, $J_{NB}(\rho)$, given by,

$$J_{NB}(\rho) = J_{Tot} - J_{Oh} - J_{BS}$$

 - Determined from magnetic field pitch angle measurements
 - Determined from magnetic equilibria
 - Calculated using measured profiles [Sauter, Angioni, and Lin-Liu, POP 6, 2834 (1999)]

- Accurate Ohmic current profiles require excellent equilibria

$$J_{Oh}(\rho) = \sigma_{neo} \frac{\partial \psi}{\partial t}$$

Ferron, VI3.00002, Thursday Afternoon
Park, NO4.00013, Wednesday Morning

Park, et al., POP 16, 092508 (2009)
Fast Ion D_α (FIDA) Systems Measure the Energetic Ion Distribution through Charge Exchange Spectroscopy

- Injected beam neutrals charge exchange with existing fast ions

- Resulting fast neutrals emit Doppler shifted light based on ion velocity along a sightline

FIDA System is Well Suited to Probing the Energetic Ion Distribution in NBCD Scenarios

- Phase space weighting, W_{FIDA}, convolves instrument and atomic effects with the modeled F_{beam}

- $W_{\text{FIDA}}(R)$ is dominated by current-carrying ions
Classical Energetic Ion Transport is Documented in Turbulent Plasmas During On-axis or Off-axis Beam Injection

- Off-axis beam injection and fast ion diagnostics in DIII-D

- Experimental results and comparisons with modeling
 - Off-axis NBCD in DIII-D: turbulent, L-mode plasmas
 - On-axis neutral beam injection in DIII-D
 - ASDEX Upgrade: comparisons with on- and off-axis neutral beam injection
MHD Quiescent Plasmas are Designed to Isolate Energetic Ion Transport due to Microturbulence

- **L-mode Plasmas:** provide excellent diagnostic access

- **Current Ramp:** Alfvénic activity broadens the fast ion profile

- **Sawtooth Crashes:** redistribute fast ions and perturb equilibrium

![Graph showing Alfvén Eigenmodes, Sawteeth, and Off-axis NBI](image-url)
Off-axis Beam Injection Places the Energetic Ion Population in a Region of Large Turbulence Fluctuation Amplitude

- Beam deposition is centered near $\rho = 0.5$
- Measured \tilde{n}_e and \tilde{T}_e are consistent with ion temperature gradient (ITG) type turbulence

$\tilde{\rho} = 0.5$

z (m)

R (m)

$\frac{v_{||}}{v}$

$145183, 1440-1608$ ms

$\delta T_e/T_e = 0.8 \pm 0.3\%$

$\rho = 0.7$

$\delta T_e/T_e = 0.6 \pm 0.3\%$
Turbulent Beam Ion Diffusivity is Calculated Using Two Independent Methods and Passed to NUBEAM

- **DEP**\(^1\): quasilinear model
 - TGLF\(^2\) calculates mode frequencies, growth rates, and spectral weights
 - integrated into TRANSP/NUBEAM for self-consistent calculation of anomalous beam ion diffusivity, \(D_B\)

- **Pueschel**\(^3\): analytic expressions, local value of \(D_B\)

\[
\begin{align*}
\frac{D_{\text{pass}}^{\text{es}}}{\chi_{\text{eff}}} & \approx \frac{0.292}{(v_\parallel / v)^2} \left(\frac{T_e}{E} \right) \\
\frac{D_{\text{trap}}^{\text{es}}}{\chi_{\text{eff}}} & \approx \frac{0.527 \sqrt{\epsilon}}{(v_\parallel / v)(1 - (v_\parallel / v)^2)} \left(\frac{T_e}{E} \right)^{3/2}
\end{align*}
\]

Anomalous Diffusivity

- Classical: 145183
- DEP: 1585 ms
- Pueschel

Energetic Ions

1\(^{\text{Waltz, et al., in preparation}}\)
2\(^{\text{Staebler, et al., POP 14, 005909 (2007)}}\)
3\(^{\text{Pueschel, et al., NF 52, 103018 (2012)}}\)
Qualitative Effects of Microturbulence are Demonstrated in NUBEAM Modeling

- Example energetic ion distribution averaged over outer midplane, $0.44 \leq \rho \leq 0.64$

- Transport increased at lower energies, as intended
Neutral Beam Current Profile is Matched by Classical Fast Ion Transport Modeling ($D_B = 0$)
Measured Energetic Ion Profiles Feature Classical Shapes

- FIDA density represents the energetic ion population within observed phase space
 - Integrated over Doppler shifted energies of 20-40 keV
 - Shape is in excellent agreement with classical profile

- FIDASIM* is a synthetic diagnostic incorporating sightline geometry, plasma profiles, and the energetic ion distribution

*Heidbrink, et al., CICP 10, 716 (2011)
Modeled Effect of Energetic Ion Diffusion due to Microturbulence is too Small to Measure

- **DEP** and **Pueschel** profiles of \(D_B \) serve to change the simulated FIDA profile within the uncertainty range of NUBEAM

- Counter-intuitive result that the exaggerated case of \(D_B = 6 \times \text{Pueschel} \) produces little effect
Turbulent Transport of Energetic Ions Occurs Outside of the FIDA and Current Drive Phase Spaces

- Calculate the difference between the $4 \times$ Pueschel and classical F_{beam}

- For this exaggerated effect, the transport is insignificant within the current drive energy range
Diffusion in Off-axis Scenario Tends to Increase Core Beam Ion Density and Current Drive

- Confinement improves as beam ions diffuse inward
- No effect on neutron rate
NUBEAM Anomalous Diffusivity Allows for Detailed Manipulation of the Energetic Ion Distribution

- **Case Study:**
 increase diffusion only for trapped ions

- **Beam-driven current increases with** $D_{B,\text{trap}}$
 - Appears that inward-diffusing trapped ions become passing
 - Total current drive increase is small, ~3%
Classical Energetic Ion Transport is Documented in Turbulent Plasmas During On-axis or Off-axis Beam Injection

• Off-axis beam injection and fast ion diagnostics in DIII-D

• Experimental results and comparisons with modeling
 – Off-axis NBCD in DIII-D: turbulent, L-mode plasmas
 – On-axis neutral beam injection in DIII-D
 – ASDEX Upgrade: comparisons with on- and off-axis neutral beam injection
On-axis NBI Produces a Spatial Beam/Turbulence Overlap Similar to that Expected in ITER

- Limited spatial overlap between fusion α-particles and turbulent fluctuations in ITER

- DIII-D on-axis beam injection
 - Beam ion profile is peaked
 - Growth rate of the dominant turbulent mode (e.g., ITG) calculated by TGLF using measured plasma profiles
Energetic Ion Profiles are Classical in MHD-quiescent Plasmas Featuring High Levels of Thermal Plasma Turbulent Transport

• Measured energetic ion profiles are consistent with classical transport expectations during microturbulence period

• Microturbulence characterized
 – ITG-type dominate
 – $\tilde{n}/n, T_e / T_e \sim 1\%$
 – $\lambda_c > 2 \text{ cm}$

• FIDA profiles deviate significantly from classical expectation during Alfvénic activity
Classical Energetic Ion Transport is Documented in Turbulent Plasmas During On-axis or Off-axis Beam Injection

- Off-axis beam injection and fast ion diagnostics in DIII-D

- Experimental results and comparisons with modeling
 - Off-axis NBCD in DIII-D: turbulent, L-mode plasmas
 - On-axis neutral beam injection in DIII-D
 - ASDEX Upgrade: comparisons with on- and off-axis neutral beam injection
The ASDEX Upgrade Tokamak Features a FIDA System Well-suited to Off-axis Beam Current Drive Studies

- Recently commissioned FIDA* system with 15 radially spaced channels
- Diagnostic weight function is sensitive to NBCD ions

ASDEX Upgrade Observes Classical Energetic Ion Profiles in Shots with 5 MW Beam Power Injected On-axis or Off-axis

- Experimental analysis is similar to DIII-D case
 - Synthetic diagnostic: F90FIDASIM
 - FIDA data integrated over 25 - 42 keV (659.5 - 661.0 nm)

- Anomalous diffusion value is large: $D_B(R) = 1.0 \text{ m}^2/\text{s}$
Experiments and Modeling Show that NBCD is Well Described in DIII-D, with Similar Expectations for ITER

- Energetic ion transport is **classical** in well-documented, turbulent plasmas

- **MHD-induced** transport is more important for ITER

- New modeling tools allow for predicting energetic ion diffusion due to microturbulence

- Anomalous diffusivity term of NUBEAM continues to evolve, allowing for advanced modeling of energetic ion transport
 - D_B: constant $\rightarrow D_B(R, t) \rightarrow D_B(E, v_{||}/v, R, t)$
 - **Alfvén eigenmodes**: energy and pitch dependence
 - **Edge magnetic perturbations**: strong spatial dependence