Time Evolution of H-mode Pedestal Characteristics in Type I ELM Discharges on DIII-D

by T.H. Osborne, P.B. Snyder, R.J. Groebner, S.P. Smith, H. Stoschus, D.M. Thomas

Presented at the 54th Annual APS Meeting Division of Plasma Physics Providence, Rhode Island

October 29 — November 2, 2012

Summary

- Improved diagnostics allow tracking of pedestal evolution between ELMs
- Peeling-ballooning mode instability drive builds continuously during inter-ELM period reaching the stability limit at ELM crash
- Pedestal evolution is generally consistent with KBM constraint in the EPEP1.0 model
- The pedestal can evolve to higher pressure at higher collisionality possibly due to effects of v_{*e} on stability

Computed with ELITE Code

High Spatial and Temporal Resolution TS and CER Systems Allow Between ELM Pedestal Evolution Studies

- In 2011, 10 additional TS spatial points (D. Eldon, B. Bray) in pedestal + improved temporal resolution (2x50 Hz + 4x20 Hz lasers)
- In 2012 improvements in TS calibration, analysis techniques, ... (B. Bray, T. Carlstrom, TS Team). Improvements in CER analysis
- At low ELM frequency (τ_{ELM}≥100 ms) can follow time evolution over a single inter-ELM period

Pedestal Current Density Profile Computed from Neoclassical Models Using Kinetic Profiles

- j_{PED} = j_{BS} + j_{DRIVE} + j_{OH} computed from kinetic profiles
- **j**_{BS} dominates **j**_{PED.} Computed from NC models (Sauter, XGC0) $J\downarrow BS \approx -L(f\downarrow T, Z, \nu\downarrow *e)\partial P/\partial \psi$ L increase with $f\downarrow T$, decrease with $\nu\downarrow *e$

 $v \downarrow * e \sim q Z \downarrow eff n/T^{\uparrow}2$

- **j**_{DRIVE} from NUBEAM
- j_{OH} assumed fully relaxed. Transients at ELM dissipate quickly (<~10ms).
- EFIT j matched to j_{PED} in pedestal and MSE in core
- Recent improvements in the LiBeam system should soon allow direct measurement of j_{PED}

Pedestal Evolution Under the EPED Model^[1] Set by Edge Stability Constraints

- In EPED model kinetic ballooning mode, KBM, provides pedestal transport constraint while peeling ballooning mode, PBM, provides ELM stability limit
 - KBM expected to survive V'_{ExB} and produce strong transport and so act as a limit on p'
 - EPED1.0 model predicts p^{PED} at ELM within 20% over a range of tokamak sizes and discharge conditions as the intersection between the KBM and PBM limits

- EPED1.0: Empirical fit to a constant KBM p' scaling coefficient, c_{α} $w(\psi \downarrow N) = 0.076 (\beta \downarrow Pol^{\uparrow})$ $\uparrow PED)\uparrow 1/2 \Rightarrow$ $\alpha = a\downarrow 0 / L\downarrow i 1/(B\downarrow P\uparrow 2) \partial p/\partial$ $\psi \downarrow N = c\downarrow \alpha w$
- EPED1.6^[1]: Parametric dependence of c_α derived using n=∞ ideal ballooning mode to estimate KBM limit

$$\alpha = c \downarrow \alpha \ (\nu \downarrow * e \dots) w$$

Under EPED Pedestal Pressure at the ELM Should Increase with Increasing Pedestal Collisionality

Pressure Profile Evolution from I_P Scan Experiment in General Agreement with EPED1.0 Model Predictions

- In all cases ELMs occur at pressures close to EPED1.0 model predictions.
- Inter-ELM evolution consistent with KBM constraint except possibly at early times
- Correlation of w-w_{EPED1} with v_{*e} suggests w may track KBM even early in EFP

A Range of Pedestal Pressures are Obtained in ITER Baseline Scenario Similarity Discharges

- Pedestal pressure increase associated with wider ETB and higher n_e^{PED}
- ETB width > EPED1 scaling late in inter-ELM period at low f_{ELM}
- At low f_{ELM}
 - Higher v_{*e} , Z_{eff}
 - larger ΔW_{ELM} despite higher ν_{*e}
 - High Z impurity accumulation
- ITER Baseline
- ITER Shape
- I_P=1.2 MA, B_T=1.6 T
- $q_{95} = 3.1$
- 1.6 < β_N < 2.2, β_N feedback

168-12/THO/rs

ITER Baseline Cases that Reach High P^{PED} Exceed the EPED1.0 KBM Width Scaling

- As in the I_P scan width contracts in early part of inter-ELM period (<20%)
- Lower w shots track up the EPED1.0 KBM limit and ELM at the PBM limit
- Cases reaching high P^{PED} exceed the EPED1.0 KBM scaling but still generally agree with predicted PBM threshold

9

ITER Baseline Discharge at β_{N} =1.6 Goes ELM Free, Reaching Very Large Width

- Lowest β_N =1.6 ITER baseline shot goes ELM free and returns to L-mode due to high radiation from accumulated high Z impurities
- Width grows to 8% of minor radius greatly exceeding w_{EPED1.0} but moves away from PBM boundary and so does not reach high P^{PED}

Correlation of Large Widths with Collisionality Possibly Due to v_{*e} Destabilizing Effect on KBM

• w - w_{EPED1.0} increases with v_{*e}

11

- Consistent with what would be expected for the effect of reduced j_{BS} at higher ν_{*e} on KBM stability
- EPED1.6 predicts substantially higher pressure but exceeds measured values
 - Improved handling of ion dilution needed in EPED

Summary, Conclusion

- Improvements in pedestal profile measurements have allowed detailed studies of the pedestal evolution between Type I ELMs
- The EPED model, combining PBM and KBM stability limits to determine the pedestal pressure at the ELM is supported by results of pedestal evolution studies
- At increased collisionality PBM threshold is increase in peeling limited regime and KBM limit is reduced also allowing higher P^{PED} at the ELM stability limit
 - This may provide a path to improved performance
 - Large pedestal also associated with large ELMs

