Latest Results on Resonant Magnetic Perturbation Induced ELM Suppression on DIII-D

by R. Nazikian For the DIII-D ELM Control Task Force

Presented at the 54th Annual APS Meeting Division of Plasma Physics Providence, Rhode Island

October 29 — November 2, 2012

Resonant field Components Generate by Upper and Lower I-coils Leads to ELM Suppression in DIII-D

I-oils generate radial magnetic fields in plasma Field alignment correlated with ELM suppression on DIII-D (resonance)

space and extrapolate to ITER

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

R. Nazikian/APS-DPP/Oct. 2012

Extension to ITER: Robust ELM Suppression Sustained for Long Duration in ITER Baseline Scenario

- Sustained for 45 τ_{E}
- Achieved with n=3 RMP from single row of I-coils
- Close match to ITER specs.

	l/aB	β _N	H ₉₈	$ u_{*,ped}$
DIII-D	1.40	1.8	0.9	0.12
ITER	1.41	1.8	1.0	0.10

- Confinement degradation observed early, improves later
- Next: extend to low rotation, optimize confinement

Extension to ITER: ELM Suppression Demonstrated in ITER Baseline with Helium

- ITER will first operate in a nonnuclear Helium phase
- On DIII-D ELM suppression with 20% helium fraction (n_{He}/n_e)
 - Same for D plasmas with similar density
- ELMs return at higher He fraction (same for D)
 - TBD: role of density vs He fraction

No RMP: H-mode Pedestal Evolution Consistent with Peeling-Ballooning Stability Limit

 Height and width of pedestal expands between ELMs

R. Nazikian/APS-DPP/Oct. 2012

SAN DIEGO

No RMP: H-mode Pedestal Evolution Consistent with Peeling-Ballooning Stability Limit

 Height and width of pedestal expands between ELMs

 Pedestal width determined by critical gradient for KBM, height determined by P-B boundary

With RMP: Pedestal Expansion Terminates and ELMs are Suppressed, Consistent with Peeling-Ballooning Stability

 ELMs are suppressed in narrow windows of q-95

With RMP: Pedestal Expansion Terminates and ELMs are Suppressed, Consistent with Peeling-Ballooning Stability

- ELMs are suppressed in narrow windows of q-95
- q-95 sensitivity suggests island
 alignment with top of pedestal is key

8

Theory Predicts Island Formation at top of Pedestal in Co-rotation Plasmas

- Vacuum model predicts strong island overlap
- Weak sensitivity to q-95
 - Counter to observation

Theory Predicts Island Formation at top of Pedestal in Co-rotation Plasmas

- Vacuum model predicts strong island overlap
- Weak sensitivity to q-95
 - Counter to observation
- But theory predicts penetration at top of pedestal when $\omega_{\perp,e} = 0$

$$\omega_{\perp,e} = \omega_{\text{ExB}} + \omega_{e,\text{dia}}$$

Theory Predicts Island Formation at top of Pedestal in Co-rotation Plasmas

- Vacuum model predicts strong island overlap
- Weak sensitivity to q-95
 - Counter to observation
- But theory predicts penetration at top of pedestal when $\omega_{\perp,e} = 0$

 $\omega_{\perp,e} = \omega_{\text{ExB}} + \omega_{\text{e,dia}}$

- Restores q-95 sensitivity for ELM suppression by island formation
 - Alignment of island to top of pedestal

A Test of the Model: Lack of ELM Suppression with Counter-NBI Indicates Importance of $|\omega|_e$

Continuous Rotation of n=2 RMP Used to Search for Islands and Plasma Kink-like Response

- Rotate perturbation past fixed detectors
- Edge displacements 4-5x larger than vacuum
 - Consistent with plasma kink-like response
- No island like displacements observed inside

13

Flux Surface Displacement Inferred from Temperature Profile Modification During n=3 RMP Displacement

 Six I-coils only allows a 180 deg. phase shift of n=3 RMP **Top View**

n = 3 B_r at midplane

- Toroidal rotation by 60 deg.

Flux Surface Displacement Inferred from Temperature Profile Modification During n=3 RMP Displacement

 Six I-coils only allows a 180 deg. phase shift of n=3 RMP

- Toroidal rotation by 60 deg.

- Kink-like edge displacement of order vacuum
 - Inferred displacement assumes Te(ψ) unchanged
- Phase dependent flattening at the top of the pedestal
 - Island-like
 - Ambiguity due to possible core transport modulation (Wade: IAEA)

Strong Progress made in Extension and Understanding of RMP ELM Suppression in DIII-D

- Suppression in ITER baseline for 45 τ_{E} and in He
- Increased physics understanding:
 - Rotation dependence of suppression
 - Measurement of plasma kink-like response (Ferraro, this session)
 - Measurement of internal displacements suggestive of islands
 - X-ray imaging of RMP near X-point (Shafer, next speaker)
- See also R. Moyer, On the role of E_r in RMP ELM suppression
 - Invited: Thursday Nov. 1, 12:00 noon, Ballroom BC

