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Plasma Turbulence is a Compelling Scientific Problem and a
Challenge for the Development of Fusion Energy

* Highly complex and sirongly nonlinear dynamics
across muliiple spatial and temporal scales

— Strong connection to related research fields
— Magnetized plasma turbulence is largely 2D in nature
— Multiple “fluids” (electron, ion, impurity)

* Understanding turbulence and turbulent transport

is critical to the development of fusion energy
systems:

— Drives transport of energy, parficles & momentum
— Sets global energy confinement time
— Determines size (and cost) of fusion reactors

Tokamak
Turbulence
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Goals for Plasma Turbulence Research

* Understand the behavior, properties and dynamics of turbulence
in magnetically confined plasmas

— What is the nature of fully saturated turbulence?
— How does it affect plasma performance?
— Can we control tfurbulence?

 Develop experimentally validated turbulent transport simulations
— Essential to extrapolating our understanding to fusion energy systems
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Turbulence in Geophysical Fluids and Magnetized Plasmas
Exhibit a Many Common Physical Features

Planetary Atmosphere Plasma Turbulence
BES Turbulence Movie

" SR e,

4 . . )
2-Dimensional
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Coriolis Force <—> Rotation Source <—> Lorentz (vxB)
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Rossby Waves «> Waves <—> Drift Waves

Jet Stream <«<—> Large-Scale Flows<— Zonal Flows

George McKee - 54th Annual Meeting of the APS-Division of Plasma Physics, Providence, Rhodes Island, November, 2012




Ovutline and Major Themes

e Introduction, Motivation and Measurement of Turbulence

* Turbulence Characteristics Consistent with Theory
— Spatial structure exhibit strong radial-poloidal asymmetry
— Relation to radial transport
— Saturation via self-driven Zonal Flows and dissipation

* Behavior and Dependence on Plasma Transport Parameters

— Amplitudes and spatiotemporal characteristics scale with gyrokinetic
parameters (ion gyroradius, gyrokinetic time scale, a/cs)

— Dominant instabilities depend on plasma collisions
— Consistent with predicted linear instabilities
* Testing, Challenging and Validating Nonlinear Simulations
— Quantitative comparisons show generally good agreement
— Cases of disagreement leading to refinement of physics models

e Controlling turbulence offers potential to improve performance
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Ovutline and Major Themes

Introduction, Motivation and Measurement of Turbulence
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Toroidal Magnetic Devices Generate Closed Magnetic Flux
Surfaces that Confine High-Temperature Plasmas

Tokamak Stellarator

Magnetic

Blanket Plasma field line

Spherical Tokamak

CONTROL

PRIMARY COILS By Reversed

(OHMIC HESTING) FIELD COaL

e Particle orbits confined to closed magnetic flux surfaces
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Toroidal Magnetic Devices Generate Closed Magnetic Flux
Surfaces that Confine High-Temperature Plasmas

Tokamak Stellarator
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Spherical Tokamak
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e Particle orbits confined to closed magnetic flux surfaces
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VP-Driven Turbulence Drives Cross-Field Transport of Particles,
Energy, and Momentum in Magnetically-Confined Plasmas

* Mulliple systems heat plasmas to temperatures required for fusion
— Ohmic, neutral beams, radio frequency & electron cyclotron heating

e Resulting equilibrated pressure profiles provide a free-energy
source for driving turbulence
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VP-Driven Turbulence Drives Cross-Field Transport of Particles,
Energy, and Momentum in Magnetically-Confined Plasmas

Free Energy

Source:
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Plasma Turbulence Driven Unstable over Broad Range of
Spatial Scales

 Power injected at gyroradius scales

e Saturates via 3-wave nonlinear interactions
— Small spaftial scales: (dissipation)
— Large spatial scales: sheared “zonal flows” (2D feature)
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Geophysical Aimospheres and Toroidal Plasmas Exhibit
Several Analogous Physical Features

* Pressure gradients and rotation drive small scale instabilities
— Rossby Waves in atmospheres, drift waves in plasmas

* Relatively small-scale instabilities generate large scale flows (2-D)
— Jet Stream in atmosphere
— Zonal Flows in Plasmas

Rossby Turbulent
< Eddies

poloidal
». magnetic field

“—

R &
plasma current  toroidal magnetic field
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Without Turbulence, “Neoclassical” Collisional Transport
Would Allow for “Small” Fusion Energy Systems

* Initial projections decades ago indicated that fusion energy
could be achieved with modest size and modest field systems

* Early experiments demonsirated that confinement was far
worse than anticipated

Calculated Turbulent Transport
for Reactor-Scale Plasma 0=y ( —VT)
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- lon thermal energy transport is
one to ftwo orders of magnitude
higher than collisional
(neoclassical) fransport

o
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- Electron fransport several orders
of magnitude higher (~2000%*)
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Drift-Wave Turbulence Drives Cross-Field Transport

* “Universal Instability” in plasmas with density & temperature gradients

¢

O

z° | y (poloidal)
( )

X (radial

e ExBrrotation about electrostatic potential structures

 Finite phase shift, 0 ¢, between density and potential fluctuations
leads to net outward radial flux of particles
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Drift-Wave Turbulence Drives Cross-Field Transport

* “Universal Instability” in plasmas with density & temperature gradients

z’ I > v (poloidal)
( )

X (radial

e ExBrrotation about electrostatic potential structures

 Finite phase shift, 0 ¢, between density and potential fluctuations
leads to net outward radial flux of particles
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Several Linear Instabilities have been Theoretically Identified
that Underly Observed Turbulence

* lon-Temperature Gradient-driven modes (ITG)
— lon charge-separation, electric field, ExB drift

G. Haommett,
APS-Review (2007

— Driven by VT [

— 5-10 ion gyroradii (ke p1~0.1-0.5)
— lon diamagnetic direction: Vpn~Vg;
* Trapped-Eleciron Modes (TEM)

— Wave-particle resonance between toroidal
precession of frapped electrons and parallel
velocity of drift wave

— Driven by VTe, Vn
— 1-10 ion gyroradii (kL p1~0.3-1)
— Electron diamagnetic direction: Von~Vd,e
* Electron-Temperature Gradient modes (ETG)
— Driven by VTe

— Electron diamagnetic direction, Von~Vd,e
— Spatial scale: ~ electron gyroradii (ke p 1~1-10) o Gy

Trajectory
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Basic Plasma Experiment Reveal Transition from
Linear Drift Modes to Saturated Turbulence

* As axial field is increased, broadband (nonlinear) turbulence develops
— Fluctuations Identified as Drift Wave Instabilities

e Basic plasma physics experiments have provided a wealth of data on
turbulence behavior

[Elecfrosiaﬁc Potential Fluctuations, q'?]
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Linear Modes > Developed Turbulence
CSDX@UCSD M. Burin, Phys. Plasmas 12, 052320 (2005)

George McKee - 54th Annual Meeting of the APS-Division of Plasma Physics, Providence, Rhodes Island, November, 2012




Characteristics of Plasma Turbulence Challenge Diagnostics

* Fluctuations in multiple fields:
nd,T,,¢,B

e Spatial scales
— Long-wavelength (kpo1<1):~1 cm

Highly Asymmetric
Turbulent Eddies

— Short-wavelength (ki pe<1): <1 mm

Temporal scales
— Gyrokinetic time scale: a/cs~10 us
— MLap = wplasma + Kev: ]O kHZ - ]O MHz

Magnitude: 0.01% < n/n < 20%

— Wide dynamic range

Phase relationships
— Turbulent flux requires correlated measurements Eddy Scales
Adequate signal-to-noise L, ~qR~10m

— Noise sources: electronic, photon,... L, ~10p, ~lcm
T~ alc, ~ IO,qu
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Multiple Diagnostics & Measurement Techniques Developed
to Measure Fluctuations in High-Temperature Plasmas

Microwave-based

— Correlation Reflectometry (A, Ley)

— Doppler-Back Scattering (N, {79 )

— High-wavenumber backscattering (n)

— Correlation Electron Cyclotron Emission/ECEI (fe)
_ Polarimetry (B )

Laser
— Phase Contrast Imaging (n)

Beam

- Heavy lon Beam Probe (fi,q?)

Optical

— Beam Emission Spec’rroscopy(fl,Lc,ZD)

— High-Frequency Charge Exchange Recombination Spec’rroscopy(fl)

— Gas Puff Imaging (ﬁ,LC,ZD)

Each views a component of multi-dimensional fluctuation “space”

[N. Bretz, Rev. Sci. Instrum. 68, 2927 ( 7997)]
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Multiple fields:
N - BES, DBS, FIR, PCI
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N-Te cross-phase (CECE-DBS)
Ti- UF-CHERS*
v - DBS, BES, UF-CHERS
¢ - Reciprocating probe
B, - Polarimeter*
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Ovutline and Major Themes

Turbulence Characteristics Consistent with Theory
— Spatial structure exhibits radial-poloidal asymmetry

— Relation to radial fransport

— Saturation via self-driven Zonal Flows and dissipation
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Temporal Behavior of Low-k Fluctuations Reveals Dynamics;
Ensemble-averaging Provides Descriptive Parameters

Time{ms): 1500.000
BES Turbulence Movie

Fluctuation Spectra
at Several Radii

— r/a=0.99
— r/a=0.82
— r/a=0.64
— r/a=0.47
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* Broadband Data * Ensemble-averaged spectral
« Spatially coherent characteristics useful for
. ~2 cm eddy size comparisons with simulation

DiliI-D Z. Yan, this meeting

ONAL FUSION FACILITY

George McKee - 54th Annual Meeting of the APS-Division of Plasma Physics, Providence, Rhodes Island, November, 2012



Turbulence Exhibits a Spatial Asymmeiry: Specira peak at
Finite Poloidal Wavenumber and Zero Radial Wavenumber

Spatial Spatial
Correlations Transform
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R. Fonck, Phys. Rev. Lett. 70, 3736 (1993)
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R. Fonck, Phys. Rev. Lett. 70, 3736 (1993) —

TFTR

Inferred Turbulent Transport is Similar to Measured Heat
Transport Coefficients

24

“Power Balance” Transport and
Turbulent Transport Models Random Walk

100
8r

~J

Measured Turbulence 7! I T
Quantities: n’ c,r? 7 c
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Density Fluctuation Amplitude Exhibits Similar Behavior on
Multiple Tokamak Experiments

Tore Supra

—
o

'Fast—S\'Neepingl
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T T — T T T 17T
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LB

TG
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r/a R Minor Radius (r/a)

Density Fluctuation (n/n, %)

* Intense edge fluctuations routinely observed in many plasmas
— Origin is uncertain
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NATIONAL FUSION FACILITY
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lon Temperature Fluctuation Measurements Suggest
lon Temperature Gradient-Driven Turbulence

* lon-Temperature-Gradient turbulence predicted to have larger
normalized T, fluctuations than n fluctuations

T v v v 7

T / T Spectrum (

/“L o e
TiTi= 1.1%+0.20% | ' o
(HF-CHERS)
\/\fv\/\/\/\/\/\
0.70 0.80 0.90

| W/n =0.40% +0.10% | | ~ Minor Radius (p)
Or (BES) ’1
Z ~ p

WMMMMWV}

HF-CHERS

50 100 150 200 250
Frequency (kHz) on TFIR

H. Evensen, Nucl. Fusion 38, 237 (1998
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Turbulence is Regulated via Self-Generated Zonal Flows

vVn,VT

[,e”

VE
Reynolds Stress

d . .
X, )

Zonal Flow/
{TurbulenceJ < > (Geodesic Acoustic Mode}

/ Self-Regulation “Jet Stream”
Dissipation via Flow Shear

(higher-k)

E,

\4
E x B,

Flow

P. Diamond, Plasma Phys. * Edd}' |
Control. Fusion 47, R35 (2005) Shearing
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Electrostatic Structures with Zonal Flows Features Observed in
CHS Stellarator with Dual Heavy lon Beam Probe

« Measured characteristics: Potential Fluctuation
Specirum
1 ||||||I 1 1 ||||||I 1 IF 1T 1rinl

— n=0 (axisymmetric)

— Highly coherent over toroidal separation
— Low frequency (0.3-2 kHz, ion collisions?)

Coherence

— Radially-localized (~2 cm wide)

"~ HIBP#1
observation points

1 1
©
6)

1 f(kHz) 10 10

Poloidal Crosssection 1

CHS Stellarajor
Dual HIBP Poloidal Cross section 2

Phase () & Coherence

CHS  A. Fujisawa, Phys. Rev. Lett. 93, 165002 (2004) 06 08
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Search for Zonal Flows Reveals “Geodesic Acoustic Mode”
Outer Region of Toroidal Plasmas

Coherent Poloidal Velocity Probes (HL-2A) show toroidal
Oscﬂlqhons (BES on DIII D) symmeiry, n=0 structure

———— shot 4206
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o\ ¥ ‘; .
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-|1|0|9||6??|/4|’9||||||||||||||||||||I||||||||||||||||||||||||||||||||||

0
40 300 320 340 360 380 400 420

10 20 30

HL-2A Frequency (kHz) Te+T) (eV)
Max-Planck-Institut G. McKee, Phys. Plasma 10, 1712 (2003)

D”’-D m flr Plasmaphysik G. Conway, Plasma Phys. Control. Fusion 47, 1165 (2005)
 diiaagin ¢ K.J. Zhao, Phys. Rev. Lett. 96, 255004 (2006)
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GAM Modulates Turbulence Amplitude and Mediates Transfer
of Internal Energy from Lower to Higher-Wavenumber

Energy Transfer measured via
Bispectrum of n, dn/dy, Vs fluctuations
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C. Holland, Phys. Plasmas 14, 056112 (2007)
DIII-D G. McKee, Phys. Plasmas 10, 1712 (2003)

TIONAL FUSION FACIL TY
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Nonlinear Analysis Demonsirates Energy Transfer to
Higher-Wavenumber Dissipation Region

* Calculation of energy transfer via bispectral analysis technique
— Modified “Ritz"” Method:

I (k1)
ot

|
=A,§cp(k,r)+5 Y AL (kK)o (kot)@(ksot)

ki K
k=k; +k,

 Peak growth rate not at spectral peak
rla=0.7 ‘(core regime)

A v v
g N (a)
N’

-

;;;//7////////; (b) _

0.05 0.10 0.15

k,p, 1, Phys. Rev. Lett. 79, 841 (1997)

BES@TFTR
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Ovutline and Major Themes

Behavior and Dependence on Plasma Transport Parameters

— Amplitudes and spatiotemporal characteristics scale with gyrokinetic
parameters (ion gyroradius, gyrokinetic time scale, a/cs)

— Dominant instabilities depend on plasma collisions
— Consistent with predicted linear instabilities
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p * Dependence of Turbulence

Characteristics

p - ion gyroradius, a - minor radius of toroidal plasma
p *= p/ais a dimensionless size scaling parameter
p *. experiments do not achieve reactor scale values; large

extrapolation required Theory predicts:

Gyro-orbit in
Magnetic Field

B<

p1, P e expected to set fundamental turbulence length scales
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Radial Correlation Length Scales with lon Gyroradius
Decorrelation Time Scales as Gyrokinetic Time Scale (a/cs)

Radial correlation length
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* Spatiotemporal characteristics consistent with gyrokinetic equations

A e G. McKee, Nuclear Fusion 41, 1235 (2001)
D”,’-P TORE SUPRA P. Hennequin, Plasma Phys. Control. Fus. 46, B121 (2004)

NATIONAL FUSION FACILITY EURATOM-CEA
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Turbulence Amplitude Profile and Wavenumber Specira scale
with lon Gyroradius (o)

Wavenumber Spectra

o * Scaling of A/n at two toroidal fields
0 Ol | | | |
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 Taken together, these measurements show quantitative
agreement with scaling predictions of gyrokinetic equations

G. McKee, Nuclear Fusion 41, 1235 (2001)
DIN=-D - :5r:srpra P Hennequin, Plasma Phys. Control. Fus. 46, B121 (2004)

NATIONAL FUSION FACILITY
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Turbulence Correlation Lengths Scale with the Toroidal lon
Gyroradius, consistent with Simulations

e Scaling with Toroidal vs Poloidal ion gyroradius determined via
current variation

— Demonstrates clear pi (and not pg) scaling
— Important for distinguishing between various models

e Simulations must include zonal flow shearing to obtain proper scale
lengths

Lc.r scaling Zonal Flow Effects

(\®]
S

p—
(U)]

® Ar Experiment
a Ar Simulation, no self-generated flow
O Ar Simulation, with self-generated flow

Lengths (cm)
>

()]

émﬁiéﬂomuﬁ

. e ¢

Radial Correlation Length (cm)

37 ]
T e K e o B

0.5 , . 0.4 0.5 0.6 0.7 0.8
Normalized radius (p) Normalized radius (p)

Dill-b T Rhodes, Phys. Plasmas 9, 2141 (2002)
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Density and Collisionality Dependence of
Turbulence Characteristics

- [dentification of Underlying Instability Modes Driving
Turbulence

Trapped Particle

Toroidal
Direction
=

Separatrix
— e

Banana
Trajectory

)

L0

Projection of Trapped lon
Trajectories is Banana Shaped

(for illustration only) /

X-point i
lon gyro-motion

Divertor
Targets
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Long-Wavelength Fluctuations Increases at Higher Density:
Transition to “Saturated Ohmic Confinement” Region

 Confinement increases linear with density at low density (Alcator-A)
— Linear ohmic confinement (LOC)

* Confinement ~constant with density above threshold

— Saturated ohmic confinement (SOC) Far-Infrared Scattering Spectra

Energy Confinement Time Average of Multiple Discharges:
vs Line Average Density Spectra are Well Separated by
Saturatlon Density

Differénce |

(ne >2x1013cm )

6 shot avg

RMS (A.U.)

, (ne<2x10 " cm’ )
I 5 shot avg

0
Line Average Density (10'3 cm™) Frequency (kHz)

* Long-wavelength mode consistent with expectations for ITG mode

DIII-D C. Rettig, Phys. Plasmas 8, 2232 (2001)
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Core Turbulence Mode Structure Correlates with Changing
Transport Properties

S(k, w) spectra

countercurrent cocurrent

High density Low density

3
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w
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6.
— Core intrinsic toroidal rotation reverses I i
direction from co-lp to counter-lp |

e Consistent with a change in dominant
instability from TEM to ITG

— Turbulent Reynolds Stress => rotation reversal

Alcator J. Rice, Phys. Rev. Lett. 107, 265001 (2011) ° 55—
C-Mod P. Diamond, Nucl. Fusion 49, 045002 (2009)
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Drift Velocity Changes with Collisionality, Consistent with
Change in Dominant Instability from TEM to ITG

Laboratory Turbulence Mode Velocity
AUG p_, ~0.7

Uy =Vexg + Vph

.VExB
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Backscattering
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« electron
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Collisionality v*

* Theory predicts that higher collisionality will damp TEM and enhance
ITG, consistent with changes in turbulence flow direction

Max-Planck-Institut G. Conway, Plasma Phys. Control. Fusion 50, 124026 (2008)
fr Plasmaphysik
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Increasing Density Gradient Reduces Small-Scale (Eleciron-
Temperature-Gradieni?) Turbulence

Density gradient changes Fluctuation Specirum shows

disappearance of higher-f feature
at higher V|

Drive term

High-k Collective u-wave Scatterin
for ETG: J . J

I s t= 408 MS
VT@ /Te I fDoppIer —t—=515ms -

- Vn,/n,

Mg m— t= 532 MS -

—

PN N TN U N TN TN TN NN TN Y O O AN |
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* Electron scale (pe) fluctuations respond as predicted for
electron temperature-gradient-driven modes

r
@ NSTX Y. Ren, Phys. Rev. Lett. 106, 165006 (2011)
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Ovutline and Major Themes

Testing, Challenging and Validating Nonlinear Simulations
— Quantitative comparisons show generally good agreement
— Cases of disagreement leading to refinement of physics models
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Nonlinear Simulations and Advanced Fluctuation Diagnostics
Allow for Quantitative Comparisons of Turbulence Properties

n/n
—_— |

Radius

Advanced
Simulations

R- 6 Cross-Correlation
Function

GYRO, J. Candy, GA
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Good Quantitative Comparison of Doppler Reflectometer to
GYRO Simulations on Tore Supra

-'0— Exp'eriment' al | | _._' Fast—s;fveepiné
X GYRO ] reflectometry
X GYRO

g Doppler .
reflectometry ' P Fast—-sweeping
——GYRO A DA 107 % reflectometry
——GYSELA ’ ——GYRO
'-1 L 10_3 PP N 2
10 107" 10

krps
oy g A. Casati, Phys. Rev. Lett. 102, 165005 (2009)
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Fluctuation Wavenumber Spectra and Amplitude Compare
Well with Simulations

* “Synthetic Diagnostics” applied to simulation output to allow for
direct, quantitative comparison between measurement and

simulation

(Wavenumber Spectra)

Phase Contrast Imaging
1.22 +/-0.03 s
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D. Ernst, IAEA-CN-149/TH/1-3 (2006)
L. Lin, Phys. Plasmas 16, 012502 (2009)

George McKee - 54th Annual Meeting of the APS-Division of Plasma Physics, Providence, Rhodes Island, November, 2012




Comparison of Turbulence Power Spectra: GYRO-BES
Demonsirate Agreement in core, Underestimate at Edge

* Synthetic BES diagnostic applied to GYRO fluctuation output:
— Allows equivalent quantities to be compared

— Profile uncertainty does not explain shortfall in calculated turbulence
and fransport

* Excellent agreement at mid-radius; “shorifall” at outer radius
KgPs
00 02 04 06 ( 0 =0.75)
. I I

400 | | | |
2 . .
<Ion”(f)l> — synthetic BES <Idn°(f)l>

— expt. BES

—— synthetic BES
— expt. BES

(0=0.5) _

107 on®/kHz
107 8n°/kHz

| l | e | .
100 200 300 400 500 200 300

frequency (kHz) frequency (kHz)

C. Holland, Phys. Plasmas 16, 052301 (2009)
Dii-D R. Waltz, Invited Talk (this conference)
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2D Wavenumber Spectra Suggest Data-Simulation Differences
that May Explain Edge Shorifall Mystery

 Core location (p=0.5) exhibits good quantitive agreement
— Fluctuation amplitudes and thermal fluxes also agree well

* Outer location (p=0.7) shows finite but significant difference
— GYRO exhibits finite kr, not seen in BES data
— May indicate an overestimate of shear effects on turbulence
— Consistent with under prediction of fluctuation amplitude and fransport

GYRO (synthetlc BES) ] - GYRO (synthetlc BES)

BES f " __BES 5 p 075

DIII-D M. Shafer, Phys. Plasmas 19, 032504 (2012)
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Multifield Comparisons of Turbulence and Transport Allow for
a More Complete Comparison with Simulation

n/n

Measured and Simulated
Power fluxes

Expt [ Gyro
O © TGLF [H] GEM

100 200 300 400
frequency (kHz)

* Transport simulations approximately correct at mid-radii, but
underestimate transport and turbulence at outer radii

Diln-D T. Rhodes, Nucl. Fusion 51, 063022 (2011)

NATIONAL FUSION FACILITY
48

George McKee - 54th Annual Meeting of the APS-Division of Plasma Physics, Providence, Rhodes Island, November, 2012



Ovutline and Major Themes

Controlling turbulence offers potential to improve performance
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Suppression of Turbulence and Transport

via E;xBr Flow Shear

Competition between shearing rates and turbulence
decorrelation rate

(RBH)2 Jd E,

ExB Shearing Rate w,. , =
B

-1
Decorrelation Rate (’L’ C)

OO o=




Imposed Flow Shear Stretches Eddy Structure and Reduces
Turbulence and Radial Transport

* Biased limiter applied to magnetized cylindrical plasma
to generate shear flow and test turbulence response

Eddy Spatial ( Turbulence and Turbulent Transport]
Correlation Decrease as Shearing Rate Increases

lllllll Illlllllll lllllllllllllllllllllllllllll
Jnbiased , ‘e o o ©0.3kHz-100kHz ‘

on/on(y,=0

-6 -4-2 0 2 4 -6-4-20 2 4
Ax (cm) Ax (cm)

I. Carter, Phys. Plasmas 16, 012304 (2009)
D. Schaffner, Phys. Rev. Lett. 109, 135002 (2012)

LAPD UCILA Normalized Shearing Rate
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Increasing Toroidal Rotation Increases E;xxBr Shearing Rate,
Improves Confinement and Tilts Turbulent Eddy Siructure

(Toro|dq| Rotqnon) Neutral Beams vary Rotation

150
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Q 0 (krad/s)

-50 : . ,
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CEXB Shearing RCIfQ) in High-Rotation Plasma  in Low-Rotation Plasma

(RB,) 0 E, !

B oy RB,
(d)

We.p =

0.6

0.4} WExB /106

02}

0.0 v
0.0 0.2 04 06 08 1.0 < >

/7cm
. Global energy confinement 25% higher in High-Rotation Plasma
P. Politzer, Nucl. Fusion 48, 075001 (2008)

Dill-D. K. Burrell, Phys. Plasmas Phys. 4, 1499 (1997)
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ExB Flow Shear Suppresses Small Scale Fluctuations

* Fluctuations with characteristics of Eleciron Temperature
Gradient (ETG) Modes observed

— ki1pe~0.15-0.2
— Propagate in the electron diomagnetic direction

— Calculated crifical gradient for ETG near measured Te gradients
* Fluctuations decrease at higher local shearing rates

40b ms'
- 515 ms

- ExB shear
50 [ rate (kHz)

) SO O P O
100170 120130 140 150

Radius (cm) S -2 -1 0 1
Frequency (MHz)

D. Smith, Phys. Rev. Lett. 102, 225005 (2009)
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Internal Transport Barrier Formation Correlates with Reduction
in Turbulence Scale Length

e Barrier evident in strongly steepening density profile
— Ti also increases sharply during this phase
— Increased ExB shear from rotation facilitates turbulence suppression

Microwave

— Negative central shear (gmin) facilitates barrier formation
[ Reflectometer

* Turbulence radial correlation length linearly
correlated with density gradient scale length os
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@) R. Nazikian, Phys. Rev. Lett. 94, 135002 (2005) Density Scale Length [cm]
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Macroscopic Plasma Shape Strongly Impacts
Turbulence and Transport

“Squareness” is a shaping [Turbulence and Transport ]
parameter referring to outer Increase with Squareness
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D”’ C. Holcomb, Phys. Plasmas 16, 056116 (2009)
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Adding Impurity Species Reduces Turbulence and Transport

* “Radiative-Improved” Mode: Turbulence

— Increases energy confinement; reduced

0.5 0.6
transport

— Neon
-- Reference

— Radiative losses dramatically increased

— Observed at multiple experiments

e Reduced turbulence and improved
confinement

Spectra (<h*>/n°/kHz)

e Simulations: reduced growth rates
— Fuel ion dilution

— Stabilization of ITG Ion Thermal Trcms ort
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Summary: In Hot Plasmas, Turbulence Happens!

Dynamic process active in magnetically-confined plasmas
Drives radial transport of particles, energy, momenium

Critical role in establishing equilibrium profiles and global energy
confinement and performance

Exhibits behavior consistent with drift-wave instabilities:

— Evidence for role of:
e lon Temperature Gradient modes
e Trapped Electron Modes
e Flectron Temperature Gradient modes

Varies with plasma transport parameters (0 *, v *, Zex)

— Correlation lengths, decorrelation times, amplitude consistent with gyrokinetics
Turbulence suppression crucial to Internal Transport Barrier formation
— Depends on magnetic shear; low-order rational g-surfaces

Quantitative consistency (sometimes!) with gyrokinetic simulations
— Establishing a validated predictive capability for transport in burning plasmas

THE UNIVERSITY
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Thank you!
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