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Plasma Turbulence is a Compelling Scientific Problem and a 
Challenge for the Development of Fusion Energy

• Highly complex and strongly nonlinear dynamics 
across multiple spatial and temporal scales
– Strong connection to related research fields

– Magnetized plasma turbulence is largely 2D in nature

– Multiple “fluids” (electron, ion, impurity)

• Understanding turbulence and turbulent transport 
is critical to the development of fusion energy 
systems:
– Drives transport of energy, particles & momentum

– Sets global energy confinement time

– Determines size (and cost) of fusion reactors
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Goals for Plasma Turbulence Research

• Understand the behavior, properties and dynamics of turbulence 
in magnetically confined plasmas
– What is the nature of fully saturated turbulence?

– How does it affect plasma performance?

– Can we control turbulence?

• Develop experimentally validated turbulent transport simulations
– Essential to extrapolating our understanding to fusion energy systems
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Turbulence in Geophysical Fluids and Magnetized Plasmas 
Exhibit a Many Common Physical Features
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Outline and Major Themes

• Introduction, Motivation and Measurement of Turbulence

• Turbulence Characteristics Consistent with Theory
– Spatial structure exhibit strong radial-poloidal asymmetry

– Relation to radial transport

– Saturation via self-driven Zonal Flows and dissipation

• Behavior and Dependence on Plasma Transport Parameters
– Amplitudes and spatiotemporal characteristics scale with gyrokinetic 

parameters (ion gyroradius, gyrokinetic time scale, a/cs)

– Dominant instabilities depend on plasma collisions

– Consistent with predicted linear instabilities

• Testing, Challenging and Validating Nonlinear Simulations
– Quantitative comparisons show generally good agreement

– Cases of disagreement leading to refinement of physics models

• Controlling turbulence offers potential to improve performance
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Toroidal Magnetic Devices Generate Closed Magnetic Flux 
Surfaces that Confine High-Temperature Plasmas
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∇P-Driven Turbulence Drives Cross-Field Transport of Particles, 
Energy, and Momentum in Magnetically-Confined Plasmas

9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

105 Pa

145945 2205.000 Pressure

Wed Oct  3 15:29:05 2012Normalized Minor Radius (!)

At
m

os
ph

er
es

Pressure Profile

• Multiple systems heat plasmas to temperatures required for fusion
– Ohmic, neutral beams, radio frequency & electron cyclotron heating

• Resulting equilibrated pressure profiles provide a free-energy 
source for driving turbulence



∇n,∇Ti,e,∇U

George McKee - 54th Annual Meeting of the APS-Division of Plasma Physics, Providence, Rhodes Island, November, 2012

∇P-Driven Turbulence Drives Cross-Field Transport of Particles, 
Energy, and Momentum in Magnetically-Confined Plasmas
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Plasma Turbulence Driven Unstable over Broad Range of 
Spatial Scales

• Power injected at gyroradius scales

• Saturates via 3-wave nonlinear interactions
– Small spatial scales: (dissipation)

– Large spatial scales: sheared “zonal flows” (2D feature)
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Geophysical Atmospheres and Toroidal Plasmas Exhibit 
Several Analogous Physical Features

• Pressure gradients and rotation drive small scale instabilities
– Rossby Waves in atmospheres, drift waves in plasmas

• Relatively small-scale instabilities generate large scale flows (2-D)
– Jet Stream in atmosphere

– Zonal Flows in Plasmas
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Without Turbulence, “Neoclassical” Collisional Transport 
Would Allow for “Small” Fusion Energy Systems

• Initial projections decades ago indicated that fusion energy 
could be achieved with modest size and modest field systems

• Early experiments demonstrated that confinement was far 
worse than anticipated
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J. Kinsey, Nucl. Fusion 51, 083001 (2011)

- Ion thermal energy transport is 
one to two orders of magnitude 
higher than collisional 
(neoclassical) transport

- Electron transport several orders 
of magnitude higher (~2000*)

Calculated Turbulent Transport
for Reactor-Scale Plasma
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• “Universal Instability” in plasmas with density & temperature gradients

• ErxBT rotation about electrostatic potential structures

• Finite phase shift, δφ, between density and potential fluctuations 
leads to net outward radial flux of particles
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Drift-Wave Turbulence Drives Cross-Field Transport
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Drift-Wave Turbulence Drives Cross-Field Transport

• “Universal Instability” in plasmas with density & temperature gradients

• ErxBT rotation about electrostatic potential structures

• Finite phase shift, δφ, between density and potential fluctuations 
leads to net outward radial flux of particles
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Several Linear Instabilities have been Theoretically Identified 
that Underly Observed Turbulence

• Ion-Temperature Gradient-driven modes (ITG)
– Ion charge-separation, electric field, ExB drift

– Driven by ∇TI

– 5-10 ion gyroradii (k⊥ρI~0.1-0.5)

– Ion diamagnetic direction: Vph~Vd,i 

• Trapped-Electron Modes (TEM)
– Wave-particle resonance between toroidal 

precession of trapped electrons and parallel 
velocity of drift wave

– Driven by ∇Te, ∇n

– 1-10 ion gyroradii (k⊥ρI~0.3-1)

– Electron diamagnetic direction: Vph~Vd,e

• Electron-Temperature Gradient modes (ETG)

– Driven by ∇Te

– Electron diamagnetic direction, Vph~Vd,e 

– Spatial scale: ~ electron gyroradii (k⊥ρI~1-10)
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Basic Plasma Experiment Reveal Transition from
Linear Drift Modes to Saturated Turbulence

• As axial field is increased, broadband (nonlinear) turbulence develops
– Fluctuations Identified as Drift Wave Instabilities

• Basic plasma physics experiments have provided a wealth of data on 
turbulence behavior
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Characteristics of Plasma Turbulence Challenge Diagnostics

• Fluctuations in multiple fields:

• Spatial scales
– Long-wavelength (k⊥ρI < 1): ~1 cm

– Short-wavelength (k⊥ρe < 1): <1 mm

• Temporal scales
– Gyrokinetic time scale: a/cs~10 μs 

– ωLab = ωplasma + k•v: 10 kHz - 10 MHz

• Magnitude: 0.01% < ñ/n < 20%
– Wide dynamic range

• Phase relationships
– Turbulent flux requires correlated measurements

• Adequate signal-to-noise
– Noise sources: electronic, photon,...
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Multiple Diagnostics & Measurement Techniques Developed 
to Measure Fluctuations in High-Temperature Plasmas

• Microwave-based
– Correlation Reflectometry (ñ, Lc,r)

– Doppler-Back Scattering (ñ,       )

– High-wavenumber backscattering (ñ)

– Correlation Electron Cyclotron Emission/ECEI

– Polarimetry (     )

• Laser
– Phase Contrast Imaging (ñ)

• Beam
– Heavy Ion Beam Probe

• Optical
– Beam Emission Spectroscopy

– High-Frequency Charge Exchange Recombination Spectroscopy

– Gas Puff Imaging

• Each views a component of multi-dimensional fluctuation “space”
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N. Bretz, Rev. Sci. Instrum. 68, 2927 (1997)
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Experiments Employ a Suite of Fluctuation Diagnostics to 
Measure a Range of Turbulence Scales and Fields
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Multiple fields:
ñ - BES, DBS, FIR, PCI
Te - CECE, ECEI
n-Te cross-phase (CECE-DBS)
TI - UF-CHERS*
v - DBS, BES, UF-CHERS
φ - Reciprocating probe
Br - Polarimeter*

*Under development
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Outline and Major Themes

• Introduction, Motivation and Measurement of Turbulence

• Turbulence Characteristics Consistent with Theory
– Spatial structure exhibits radial-poloidal asymmetry

– Relation to radial transport

– Saturation via self-driven Zonal Flows and dissipation

• Behavior and Dependence on Plasma Transport Parameters
– Amplitudes and spatiotemporal characteristics scale with gyrokinetic 

parameters (ion gyroradius, gyrokinetic time scale, a/cs)

– Dominant instabilities depend on plasma collisions

– Consistent with predicted linear instabilities

• Testing, Challenging and Validating Nonlinear Simulations
– Quantitative comparisons show generally good agreement

– Cases of disagreement leading to refinement of physics models

• Controlling turbulence offers potential to improve performance
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Temporal Behavior of Low-k Fluctuations Reveals Dynamics;
Ensemble-averaging Provides Descriptive Parameters
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Turbulence Exhibits a Spatial Asymmetry: Spectra peak at 
Finite Poloidal Wavenumber and Zero Radial Wavenumber
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Inferred Turbulent Transport is Similar to Measured Heat 
Transport Coefficients
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R. Fonck, Phys. Rev. Lett. 70, 3736 (1993)
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Density Fluctuation Amplitude Exhibits Similar Behavior on 
Multiple Tokamak Experiments

• Intense edge fluctuations routinely observed in many plasmas
– Origin is uncertain

2527

4

6
8

1

2

4

6
8

10

De
ns

ity
 F

lu
ct

ua
tio

n 
(ñ

/n
, %

)

1.00.90.80.70.60.50.40.3
Minor Radius (r/a)

DIII-D

δn
n
%( )

TFTRTore Supra



George McKee - 54th Annual Meeting of the APS-Division of Plasma Physics, Providence, Rhodes Island, November, 2012

Ion Temperature Fluctuation Measurements Suggest 
Ion Temperature Gradient-Driven Turbulence

• Ion-Temperature-Gradient turbulence predicted to have larger 
normalized TI fluctuations than ñ fluctuations
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Turbulence is Regulated via Self-Generated Zonal Flows
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Electrostatic Structures with Zonal Flows Features Observed in 
CHS Stellarator with Dual Heavy Ion Beam Probe

• Measured characteristics:
– n=0 (axisymmetric)

– Highly coherent over toroidal separation

– Low frequency (0.3-2 kHz, ion collisions?)

– Radially-localized (~2 cm wide)
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A. Fujisawa, Phys. Rev. Lett. 93, 165002 (2004)CHS
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Search for Zonal Flows Reveals “Geodesic Acoustic Mode” in 
Outer Region of Toroidal Plasmas
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GAM Modulates Turbulence Amplitude and Mediates Transfer 
of Internal Energy from Lower to Higher-Wavenumber
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Nonlinear Analysis Demonstrates Energy Transfer to
Higher-Wavenumber Dissipation Region
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Outline and Major Themes

• Introduction, Motivation and Measurement of Turbulence

• Turbulence Characteristics Consistent with Theory
– Spatial structure exhibit strong radial-poloidal asymmetry

– Relation to radial transport

– Saturation via self-driven Zonal Flows and dissipation

• Behavior and Dependence on Plasma Transport Parameters
– Amplitudes and spatiotemporal characteristics scale with gyrokinetic 

parameters (ion gyroradius, gyrokinetic time scale, a/cs)

– Dominant instabilities depend on plasma collisions

– Consistent with predicted linear instabilities

• Testing, Challenging and Validating Nonlinear Simulations
– Quantitative comparisons show generally good agreement

– Cases of disagreement leading to refinement of physics models

• Controlling turbulence offers potential to improve performance
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ρ* Dependence of Turbulence 

Characteristics

ρI, ρe expected to set fundamental turbulence length scales 
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Radial Correlation Length Scales with Ion Gyroradius 
Decorrelation Time Scales as Gyrokinetic Time Scale (a/cs)

• Spatiotemporal characteristics consistent with gyrokinetic equations 
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Turbulence Amplitude Profile and Wavenumber Spectra scale 
with Ion Gyroradius (ρI

*)
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Turbulence Correlation Lengths Scale with the Toroidal Ion 
Gyroradius, consistent with Simulations

36

• Scaling with Toroidal vs Poloidal ion gyroradius determined via 
current variation
– Demonstrates clear ρI (and not ρθ) scaling

– Important for distinguishing between various models

• Simulations must include zonal flow shearing to obtain proper scale 
lengths

Zonal Flow EffectsLc,r scaling

T. Rhodes, Phys. Plasmas 9, 2141 (2002)
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Density and Collisionality Dependence of 
Turbulence Characteristics

- Identification of Underlying Instability Modes Driving 
Turbulence

Trapped Particle
Orbits
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Long-Wavelength Fluctuations Increases at Higher Density: 
Transition to “Saturated Ohmic Confinement” Region

• Confinement increases linear with density at low density (Alcator-A)
– Linear ohmic confinement (LOC)

• Confinement ~constant with density above threshold
– Saturated ohmic confinement (SOC)

• Long-wavelength mode consistent with expectations for ITG mode
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C. Rettig, Phys. Plasmas 8, 2232 (2001)

Far-Infrared Scattering Spectra
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Core Turbulence Mode Structure Correlates with Changing 
Transport Properties

39

J. Rice, Phys. Rev. Lett. 107, 265001 (2011)
P. Diamond, Nucl. Fusion 49, 045002 (2009)

• As density increases:
– Core intrinsic toroidal rotation reverses 

direction from co-Ip to counter-Ip

• Consistent with a change in dominant 
instability from TEM to ITG
– Turbulent Reynolds Stress => rotation reversal

S(k,ω) spectra

High density Low density

Difference
Spectrum

Toroidal Velocity

τ E
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Drift Velocity Changes with Collisionality, Consistent with 
Change in Dominant Instability from TEM to ITG

• Theory predicts that higher collisionality will damp TEM and enhance 
ITG, consistent with changes in turbulence flow direction

40

G. Conway, Plasma Phys. Control. Fusion 50, 124026 (2008)

Laboratory Turbulence Mode Velocity

Doppler
Backscattering
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Increasing Density Gradient Reduces Small-Scale (Electron-
Temperature-Gradient?) Turbulence

41

Y. Ren, Phys. Rev. Lett. 106, 165006 (2011)

High-k Collective μ-wave Scattering

• Electron scale (ρe) fluctuations respond as predicted for 
electron temperature-gradient-driven modes

Density gradient changes
rapidly after “ELM” event

Fluctuation Spectrum shows 
disappearance of higher-f feature

at higher ∇n e

ηE =
∇Te Te
∇ne ne

Drive term 
for ETG:



George McKee - 54th Annual Meeting of the APS-Division of Plasma Physics, Providence, Rhodes Island, November, 2012

Outline and Major Themes

• Introduction, Motivation and Measurement of Turbulence

• Turbulence Characteristics Consistent with Theory
– Spatial structure exhibit strong radial-poloidal asymmetry

– Relation to radial transport

– Saturation via self-driven Zonal Flows and dissipation

• Behavior and Dependence on Plasma Transport Parameters
– Amplitudes and spatiotemporal characteristics scale with gyrokinetic 

parameters (ion gyroradius, gyrokinetic time scale, a/cs)

– Dominant instabilities depend on plasma collisions

– Consistent with predicted linear instabilities

• Testing, Challenging and Validating Nonlinear Simulations
– Quantitative comparisons show generally good agreement

– Cases of disagreement leading to refinement of physics models

• Controlling turbulence offers potential to improve performance

42



George McKee - 54th Annual Meeting of the APS-Division of Plasma Physics, Providence, Rhodes Island, November, 2012

Nonlinear Simulations and Advanced Fluctuation Diagnostics 
Allow for Quantitative Comparisons of Turbulence Properties

43

GYRO, J. Candy, GA

Compariso
n

ValidationAdvanced
Simulations

R-θ Cross-Correlation
Function

Radius

Z
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Good Quantitative Comparison of Doppler Reflectometer to 
GYRO Simulations on Tore Supra

44
A. Casati, Phys. Rev. Lett. 102, 165005 (2009)
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Fluctuation Wavenumber Spectra and Amplitude Compare 
Well with Simulations

• “Synthetic Diagnostics” applied to simulation output to allow for 
direct, quantitative comparison between measurement and 
simulation

45

D. Ernst, IAEA-CN-149/TH/1-3 (2006) 
L. Lin, Phys. Plasmas 16, 012502 (2009)

AmplitudeWavenumber Spectra
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Comparison of Turbulence Power Spectra: GYRO-BES 
Demonstrate Agreement in core, Underestimate at Edge

• Synthetic BES diagnostic applied to GYRO fluctuation output:
– Allows equivalent quantities to be compared

– Profile uncertainty does not explain shortfall in calculated turbulence 
and transport

• Excellent agreement at mid-radius; “shortfall” at outer radius

46

!"

#

C. Holland, Phys. Plasmas 16, 052301 (2009)
R. Waltz, Invited Talk (this conference)

ρ=0.75

!

ρ=0.5
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2D Wavenumber Spectra Suggest Data-Simulation Differences 
that May Explain Edge Shortfall Mystery

• Core location (ρ=0.5) exhibits good quantitive agreement
– Fluctuation amplitudes and thermal fluxes also agree well

• Outer location (ρ=0.7) shows finite but significant difference
– GYRO exhibits finite kr, not seen in BES data

– May indicate an overestimate of shear effects on turbulence

– Consistent with under prediction of fluctuation amplitude and transport 

47

M. Shafer, Phys. Plasmas 19, 032504 (2012)
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Multifield Comparisons of Turbulence and Transport Allow for 
a More Complete Comparison with Simulation

• Transport simulations approximately correct at mid-radii, but 
underestimate transport and turbulence at outer radii

48

 n n

 
Te Te

ΘnT

ρ=0.6

T. Rhodes, Nucl. Fusion 51, 063022 (2011)

Measured and Simulated
Power fluxes
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Outline and Major Themes

• Introduction, Motivation and Measurement of Turbulence

• Turbulence Characteristics Consistent with Theory
– Spatial structure exhibit strong radial-poloidal asymmetry

– Relation to radial transport

– Saturation via self-driven Zonal Flows and dissipation

• Behavior and Dependence on Plasma Transport Parameters
– Amplitudes and spatiotemporal characteristics scale with gyrokinetic 

parameters (ion gyroradius, gyrokinetic time scale, a/cs)

– Dominant instabilities depend on plasma collisions

– Consistent with predicted linear instabilities

• Testing, Challenging and Validating Nonlinear Simulations
– Quantitative comparisons show generally good agreement

– Cases of disagreement leading to refinement of physics models

• Controlling turbulence offers potential to improve performance

49



ωE×B =
RBθ( )2

B
∂

∂ψ
Er

RBθ
≈
d
dr
Vθ

George McKee - 54th Annual Meeting of the APS-Division of Plasma Physics, Providence, Rhodes Island, November, 2012
50

Suppression of Turbulence and Transport 
via ErxBT Flow Shear

Competition between shearing rates and turbulence 
decorrelation rate

τ c( )−1
ExB Shearing Rate

Decorrelation Rate
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Imposed Flow Shear Stretches Eddy Structure and Reduces 
Turbulence and Radial Transport

• Biased limiter applied to magnetized cylindrical plasma 
to generate shear flow and test turbulence response

51

T. Carter, Phys. Plasmas 16, 012304 (2009)
D. Schaffner, Phys. Rev. Lett. 109, 135002 (2012)
LAPD UCLA

Turbulence and Turbulent Transport
Decrease as Shearing Rate Increases

Eddy Spatial
Correlation

Normalized Shearing Rate

Particle Transport



Toroidal Rotation
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Increasing Toroidal Rotation Increases ErxBT Shearing Rate, 
Improves Confinement and Tilts Turbulent Eddy Structure

52

ωE×B =
RBθ( )2

B
∂

∂ψ
Er

RBθ

High Rotation Low Rotation

P. Politzer, Nucl. Fusion 48, 075001 (2008)
K. Burrell, Phys. Plasmas Phys. 4, 1499 (1997)

Neutral Beams vary Rotation

Eddy Cross-Correlation
in High-Rotation PlasmaExB Shearing Rate

High
Low

7 cm

9 cm

Eddy Cross-Correlation
in Low-Rotation Plasma

• Global energy confinement 25% higher in High-Rotation Plasma

ρ=0.7
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ExB Flow Shear Suppresses Small Scale Fluctuations

• Fluctuations with characteristics of Electron Temperature 
Gradient (ETG) Modes observed
– k⊥ρe~0.15-0.2

– Propagate in the electron diamagnetic direction

– Calculated critical gradient for ETG near measured Te gradients

• Fluctuations decrease at higher local shearing rates

53
D. Smith, Phys. Rev. Lett. 102, 225005 (2009)
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Internal Transport Barrier Formation Correlates with Reduction 
in Turbulence Scale Length

54
R. Nazikian, Phys. Rev. Lett. 94, 135002 (2005)

ITB Formation

• Barrier evident in strongly steepening density profile
– TI also increases sharply during this phase

– Increased ExB shear from rotation facilitates turbulence suppression

– Negative central shear (qmin) facilitates barrier formation

• Turbulence radial correlation length linearly                       
correlated with density gradient scale length

Microwave
Reflectometer
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Macroscopic Plasma Shape Strongly Impacts 
Turbulence and Transport

55

C. Holcomb, Phys. Plasmas 16, 056116 (2009)

Turbulence and Transport
Increase with Squareness

“Squareness” is a shaping
parameter referring to outer
upper/lower boundary
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Adding Impurity Species Reduces Turbulence and Transport

• “Radiative-Improved” Mode:
– Increases energy confinement; reduced 

transport

– Radiative losses dramatically increased

– Observed at multiple experiments

• Reduced turbulence and improved 
confinement

• Simulations: reduced growth rates
– Fuel ion dilution

– Stabilization of ITG
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Summary: In Hot Plasmas, Turbulence Happens!

• Dynamic process active in magnetically-confined plasmas

• Drives radial transport of particles, energy, momentum

• Critical role in establishing equilibrium profiles and global energy 
confinement and performance

• Exhibits behavior consistent with drift-wave instabilities:
– Evidence for role of:

• Ion Temperature Gradient modes

• Trapped Electron Modes

• Electron Temperature Gradient modes

• Varies with plasma transport parameters (ρ*, ν*, Zeff)

– Correlation lengths, decorrelation times, amplitude consistent with gyrokinetics

• Turbulence suppression crucial to Internal Transport Barrier formation
– Depends on magnetic shear; low-order rational q-surfaces

• Quantitative consistency (sometimes!) with gyrokinetic simulations
– Establishing a validated predictive capability for transport in burning plasmas

57
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