#### Plasma Fluctuation measurements in Ion Stiffness Experiments using Phase Contrast Imaging

<sup>by</sup> A. Marinoni<sup>1</sup>

In collaboration with: J.C. Rost<sup>1</sup>, M. Porkolab<sup>1</sup> K.H. Burrell<sup>2</sup>, J. Candy<sup>2</sup>, T.C. Luce<sup>2</sup> and the DIII-D Team

<sup>1</sup> Plasma Science and Fusion Center, MIT, Cambridge (MA) <sup>2</sup> General Atomics, San Diego (CA)

#### Presented at the 54<sup>th</sup> meeting of the APS division on Plasma Physics **Providence, Rhode Island**

#### October 29<sup>th</sup> - November 2<sup>nd</sup>, 2012





What is stiffness ?

## The profile's resistance to change with the addition of heating power





2

### **High stiffness may affect ITER performance**

- TGLF modeling of ITER base case scenario suggest very stiff transport at fixed pedestal beta and no ExB shear [J. Kinsey at al., *Nucl. Fusion* **51**, 083001 (2011)]
- Recent JET experimental results indicate that, at low magnetic shear, ion stiffness significantly increases with lowering toroidal rotation, and thus ExB shear
  [P. Mantica et al., *Phys. Rev. Lett.* 107, 135004 (2011)]
- ITER is expected to rotate slowly due to low external torque and high inertia, thus stiff profiles are predicted

### How will the fusion power scale with the coupled power ?



3

# Dedicated experiments were performed on DIII-D to test the impact of rotation on ion stiffness

- Goal: vary heat flux at fixed  $\beta_{ped}$  in ITER relevant scenario
- Co and balanced beams provided low and high rotation
- NBI power varied by a factor of 3 at low and at high rotation

$$-n_{e0} \sim 5-6 \ 10^{19} \ m^{-3}$$
  
 $-T_{e0} \sim 3.5-5 \ keV$ 

$$-T_{i0} \sim 4-8 \text{ keV}$$

$$-B_{T} = 2.17$$

$$-q_0 \sim 1.2$$

 $-\beta_p \sim 0.6-1.2$ 





### **ExB velocity depends primarily on torque**



## **Does a larger ExB (shear) reduce transport and fluctuations?**



### Plasmas at high rotation show lower transport consistent with a larger ExB shear quench



Larger difference between the two scenarios at outer radii Linear relationship between fluxes and gradients



#### Fluctuations were measured by the Phase Contrast Imaging diagnostic



*Details on the system: J.C. Rost, GP8.00090* 

#### Fluctuations were measured by the Phase Contrast Imaging diagnostic



### Fluctuations were measured by the Phase Contrast Imaging diagnostic

- Sensitive to the line integral of density fluctuations
- Large bandwidth
  - f: 10 kHz 10 MHz
  - k: 1 20 cm<sup>-1</sup>
- Sensitive to horizontally directed wave-vectors:
  - $-\ k_{\rho} \mbox{-} k_{\theta}$  components change along the beam-path
- k<sub>θ</sub> induces a net Doppler shift

*Details on the system: J.C. Rost, GP8.00090* 





### Intrinsic frequency and Doppler shifts are captured by the PCI



#### Intrinsic frequency and Doppler shifts are captured by the PCI



### Doppler shift in PCI spectra is consistent with CXRS measurements



## Difference in Doppler shift localizes the signal in the region $0.5 < \rho < 0.8$





# Difference in Doppler shift localizes the signal in the region $0.5 < \rho < 0.8$



A difference in Doppler shift of 200 kHz is compatible with standard turbulence spatial scales in 0.5 <  $\rho$  < 0.8

Innermost radii and the pedestal are to be excluded



## The intensity of fluctuations decreases at high rotation



**Comparable intensities at same torque and different power** 

High torque plasmas show similar Doppler shifts



## The intensity of fluctuations decreases at high rotation



#### **Comparable intensities at same torque and different power**



#### Correlation lengths do not seem to depend on either torque or power



#### The impact of torque is within the PCI resolution



#### **Conclusions and future work**

#### Intensity of fluctuations:

- Strong torque dependence
- **No power** dependence

#### Correlations lengths:

Independent of torque and power

Based on Doppler shifts, the bulk of the signal comes from the region  $0.5 < \rho < 0.8$ , where the effect of torque on transport is the largest

Nonlinear GYRO simulations and comparisons via a synthetic diagnostic are **in progress** 





- The sensitivity of the gyro-Bohm normalized ion heat flux to the driving R/LTi. [J.Citrin, ITPA 2012]
- The ratio between the diffusivity and the difference between the logarithmic gradient of the temperature and its critical value, using an appropriate normalization.
  [X.Garbet, PPCF 2004]
- Marginal stability, i.e. profiles whose gradients are close to the instability threshold everywhere
- The profile's resistance to change with the addition of heating power... i.e. the fractional increase in the diffusive heat flux divided by the fractional increase in the temperature gradient [J.De Boo, PoP 2012]



### Doppler shift in PCI spectra is consistent with CXRS measurements

