Stability boundaries and development of the ITER baseline scenario,* G.L. Jackson, T.C. Luce, R.J. Buttery, A.W. Hyatt, J.R. Ferron, R.J. La Haye, P.A. Politzer, General Atomics; W.M. Solomon, PPPL; F. Turco, Columbia U.; E.J. Doyle, UCLA – Plasmas stable to $m/n = 2/1$ tearing modes (TMs), in the ITER baseline scenario (IBS) with ITER similar I_p/aB_T, have been demonstrated in DIII-D, evolving to stationary conditions. Previous studies showed the possibility that long pulse IBS plasmas might be susceptible to TMs. However within a defined stability boundary, most of these longer duration discharges have achieved stationary conditions ($\Delta t_{\text{duration}} \leq 7.5$ s and $\leq 11\tau_R$) with high Co-beam torque and without the need for ECCD. To mitigate 2/1 TMs at reduced torque, broad ECCD deposition was found to be most effective when positioned near the $q=3/2$ flux surface, although a subset of low torque pulses were also obtained without ECCD. The DIII-D internal coils (I-coils) were used to achieve ELM suppression in IBS plasmas with ECCD at $q_{95} = 3.15$ for durations up to 1 s with only the upper row of I-coils, providing a broad $n=3$ spectrum. Conditions stable to $n=1$ tearing modes in IBS discharges and the effect of Z_{eff}, density, and other parameters are discussed.

*This work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FG02-04ER54761 and DE-FG02-08ER54984.