Observation of a Critical Gradient Threshold for Electron Temperature Fluctuations in the DIII-D Tokamak

Presented by J. C. Hillesheim^a

In collaboration with J.C. DeBoo¹, W.A. Peebles, T.A. Carter, G. Wang, T.L. Rhodes, L. Schmitz, G.R. McKee², Z. Yan², C. Holland³, S.P. Smith¹, C.C. Petty¹, G. M. Staebler¹, T.C. Luce¹, K.H. Burrell¹, E.J. Doyle, A.E. White⁴, and L. Zeng

Department of Physics and Astronomy University of California-Los Angeles ^a Presently at: Culham Centre for Fusion Energy ¹ General Atomics ² University of Wisconsin-Madison ³ University of California-San Diego ⁴ Massachusetts Institute of Technology

Presented at 54th American Physical Society Division of Plasma Physics Meeting

Providence, RI, USA

October 29, 2012

UCLA

Motivation: Validation of the critical gradient paradigm for turbulence driven transport

- Gyroradius-scale mode becomes linearly unstable, explosive growth leads to large macroscopic change in heat fluxes and diffusivities
- Threshold can be up-shifted non-linearly, e.g. Dimits shift

Motivation: Validation of the critical gradient paradigm for turbulence driven transport

- Direct validation of this picture requires systematic measurements of the turbulent fluctuations driven unstable by the new mode, which cause the increased transport
 - Previous work restricted to indirect studies

Motivation: Critical gradient leads to stiff transport

- Local stiffness parameterizes incremental change in flux for incremental change in gradient: $S = \frac{\nabla T_e}{Q_e} \frac{\partial Q_e}{\partial (\nabla T_e)}$
- Global stiffness (i.e. profile resilience): little change to profiles with additional heating, strongly diminishing returns

Summary of results

- First direct, systematic observation of a critical gradient in a locally measured fluctuating turbulent quantity in a tokamak
 - Critical gradient observed for both electron thermal transport and electron temperature fluctuations

• Evidence identifies threshold with ∇T_e driven trapped electron mode turbulence

 ∇T_e -TEM

 $Q_e, \frac{\delta T_e}{T_e}$

- Supported by linear & non-linear calculations
 - Linear gyrofluid calculations with TGLF
 - Nonlinear gyrokinetic simulations with GYRO

L-mode target discharge

- Upper single null, diverted
 - I_p=0.8 MA
 - B_T=-2 T
 - $< n_e > 2x10^{13} \text{ cm}^{-3}$
 - R~1.7 m, a~0.6 m

ECH-only and NBI+ECH shots

- Rotation scan at fixed power
- $P_{ECH} \sim 3$ MW, 1 gyrotron modulated
- $-P_{NBI} \sim 2 MW$
- Turbulence measurements:
 - T_e fluctuations , 2 radii per shot (CECE)
 - nT crossphase (CECE + reflectometry)
 - Density fluctuations (BES, DBS)

Steady-state time periods used to average profile and turbulence data

- Highly reproducible, stationary discharges
- 3 time periods per shot: ECH-only, ECH+Co-NBI, and either ECH+Bal-NBI or ECH+Ctr-NBI

7

Local electron temperature gradient and rotation systematically varied in repeated L-mode discharges

- ECH deposition locations modified shot-toshot to locally scan ∇T_e at rho=0.6
- Fluctuation measurements acquired near rho=0.6 during ~500-800 ms steady-state periods
- Rotation (and flow shear) varied by changing NBI mix at fixed power

- Other profiles:
 - For ECH only T_i lower everywhere,
 - T_e lower in core (rho<0.5)
 - Density feedback controlled, well-matched >
 - Z_{eff} higher with Ctr-NBI

JC Hillesheim/APS-DPP/Oct. 2

Long wavelength electron temperature fluctuations increase with $1/L_{Te}$

JC Hillesheim/APS-DPP/Oct. 2012

T_e fluctuations show critical gradient threshold in $1/L_{Te}$

10

Power balance inferred flux increases non-linearly with $1/L_{Te}$, limited rotation dependence

- Electron heat flux similar to results from F. Ryter et al. Phys. Rev. Lett. 95, 085001 (2005), but also shows little rotation dependence
- Further transport and stiffness analysis reported in J.C. DeBoo et al., Phys. Plasmas 19, 082518 (2012)

$$\widetilde{Q}_{e} = \frac{3n_{e}T_{e}}{2B}k_{\theta}\left(\frac{|\tilde{n_{e}}|}{n_{e}}|\tilde{\varphi}|\gamma_{n_{e},\varphi}\sin\alpha_{n_{e},\varphi} + \frac{|\tilde{T}_{e}|}{T_{e}}|\tilde{\varphi}|\gamma_{T_{e},\varphi}\sin\alpha_{T_{e},\varphi}\right)$$

Simultaneous increase in T_e fluctuations and heat flux with little sensitivity to rotation or flow shear

Fit to model equation quantifies critical gradient value and uncertainty estimate

• Functional form similar to models in F. Imbeaux and X. Garbet Plamsa Phys. Control. Fusion 44, 1425 (2002)

 Data varied within uncertainties; mean and standard deviation of fits to:

$$\chi_e \propto \frac{\delta T_e^2}{T_e^2} = c_0 + c_1 \left(L_{T_e}^{-1} - L_{T_e}^{-1} |_{crit} \right)^\ell H \left(L_{T_e}^{-1} - L_{T_e}^{-1} |_{crit} \right)$$

Heat pulse analysis shows critical gradient; stiffness parameter increased above threshold

- ECH-only threshold at $1/L_{crit}$ =3.0 ± 0.2 m⁻¹, within uncertainties of temperature fluctuation threshold at 2.8 ± 0.4 m⁻¹
- See C. C. Petty NO4.00009 Wednesday for additional heat pulse analysis

Threshold identified

• First direct, systematic observation of a critical gradient in a locally measured fluctuating turbulent quantity in a tokamak

- Critical gradient observed for both electron thermal transport and electron temperature fluctuations
 - Electron temperature fluctuations threshold
 - Electron thermal diffusivity threshold
 - Increase in local stiffness above threshold
 - Nonlinear increase in electron heat flux
- Evidence identifies threshold with ∇T_e driven trapped electron mode turbulence
- **∇***T*_{*e*} -TEM
 - Supported by linear & non-linear calculations
 - Linear gyrofluid calculations with TGLF
 - Nonlinear gyrokinetic simulations with GYRO

What trends and characteristics can be observed in the turbulence measurements?

- First direct, systematic observation of a critical gradient in a locally measured fluctuating turbulent quantity in a tokamak
 - Critical gradient observed for both electron thermal transport and electron temperature fluctuations

- Evidence identifies threshold with ∇T_e driven trapped electron mode turbulence
- ∇T_e -tem
 - Supported by linear & non-linear calculations
 - Linear gyrofluid calculations with TGLF
 - Nonlinear gyrokinetic simulations with GYRO

Density fluctuations show little change with $1/L_{Te}$, The ratio $(\delta T_e/T_e)/(\delta n_e/n_e)$ increases at low-k

- $1/L_{Te}$ threshold & $(\delta T_e/T_e)/(\delta n_e/n_e)$ trend consistent with transition to ∇T_e -TEM turbulence
- Intermediate-k fluctuations higher with NBI

Changes to intermediate-k density fluctuation spectra consistent with new mode being driven at high $1/L_{Te}$

- Frequency-localized increase in DBS spectrum with 1/L_{Te} in ECH+Bal-NBI plasmas
 - Electron diamagnetic direction is negative direction
 - Increase on electron diamagnetic side of spectrum consistent with ∇T_e -TEM
- Different behavior below critical gradient with the various NBI configurations

The crossphase angle between fluctuating quantities is a fundamental characteristic of plasmas instabilities

Crossphase measurements:

- Changes imply changes to dominant mode driving transport
- Changes give reason to consider changes to transport crossphases
- Strong, multi-field constraint for comparison to simulations
- Coherency between electron temperature and density fluctuations increases with 1/L_{Te}
 - Coherent frequency range varies with rotation, consistent with a Doppler shift
- Measured crossphase changes with 1/L_{Te}

JC Hillesheim/APS-DPP/O

nT crossphase changes with a/L_{Te}, implying change in dominant instability driving turbulent transport

• ECH+Co-NBI and ECH+Bal-NBI quantitatively similar to previous results (White PoP 2010, Rhodes NF 2011, Wang PoP 2011), where changes to T_e/T_i and collisionality (with comparatively little $1/L_{Te}$ change) were attributed to ITG to TEM transition

Predicted linear nT crossphase from TGLF consistent with interpretation of measurements in ECH+Co-NBI as transition from predominantly ITG to TEM

- nT crossphase shows little trend with a/L_{Te} for each mode independently
 - Interpretation: measured crossphase is weighted average
- Crossphase measurements changed from $-149^{\circ} \pm 15^{\circ}$ to $-86^{\circ} \pm 7^{\circ}$; trend consistent with ITG below threshold in ECH+Co-NBI plasmas

ECH-only plasmas exhibit different behavior, implying different instability below threshold

• Measurement implies different instability behavior below threshold, current conjecture for ECH-only is ∇n_e -TEM

Different instability behavior also implied for ECH+Ctr-NBI by nT crossphase measurements

- Significantly different behavior for ECH+Ctr-NBI at low 1/L_{Te}
 - Radial dependence: positive values both from inner location

All cases converge at high $1/L_{Te}$, implying common mode present in all four

JC Hillesheim/APS-DPP/Oct. 2012

Accumulated evidence strongly constrains identification of ∇T_e -TEM

- First direct, systematic observation of a critical gradient in a locally measured fluctuating turbulent quantity in a tokamak
 - Critical gradient observed for both electron thermal transport and electron temperature fluctuations
- Accumulated evidence identifies threshold with ∇T_e driven trapped electron mode turbulence
 - 1/L_{Te} threshold
 - The ratio $(\delta T_e/T_e)/(\delta n_e/n_e)$ increases for low-k fluctuations
- ∇T_{ρ} -TEM nT crossphase
 - Measurements imply common mode above threshold
 - Measured crossphase moves from ITG toward TEM in linear predictions
 - Spectral changes consistent with TEM
 - Supported by linear & non-linear calculations
 - Linear gyrofluid calculations with TGLF
 - Nonlinear gyrokinetic simulations with GYRO

How to experimental results compare to linear and nonlinear predictions?

- First direct, systematic observation of a critical gradient in a locally measured fluctuating turbulent quantity in a tokamak
 - Critical gradient observed for both electron thermal transport and electron temperature fluctuations
- Evidence identifies threshold with ∇T_e driven trapped electron mode turbulence
 - 1/L_{Te} threshold
 - The ratio $(\delta T_e/T_e)/(\delta n_e/n_e)$ increases
- ∇T_{e} -TEM nT crossphase
 - Common mode above threshold
 - Measured crossphase moves from ITG toward TEM in linear predictions
 - Spectral changes consistent with TEM
 - Supported by linear & non-linear calculations
 - Linear gyrofluid calculations with TGLF
 - Nonlinear gyrokinetic simulations with GYRO

Growth rate spectrum of fastest growing linear modes propagating in electron diamagnetic direction generally increases with $1/L_{Te}$

Other measures $(\gamma(k), \langle \gamma \rangle, \gamma'/_{k^2})$ similar

 The Trapped-Gyro-Landau-Fluid (TGLF) code used for linear stability analysis

- Experimental profiles used as inputs

TEM growth rates consistent with experimental critical gradient

Density gradient affects linear stability calculations, instability above $\eta_e = L_{ne}/L_{Te} \sim 2$

• No large non-linear upshift of threshold ("Dimits shift") observed

- If an upshift exists, it's impact is smaller than the ~10% variations in other parameters that lead to scatter in the growth rate calculations
- Consistent with simulations of with PT_e -TEM showing weak impact of zonal flows (Dannert PoP 2005, Ernst PoP 2009); opposite seen in simulations for Pn_e -TEM (Ernst PoP 2004), ITG (Dimits PoP 2000), see also following talk

Nonlinear GYRO prediction for Q_e close to experimental values in ECH-only plasmas at low a/L_{Te} , but a shortfall exists at high a/L_{Te}

- Global nonlinear gyrokinetic simulations with GYRO
 - Electrostatic, with 3 kinetic species (electrons, deuterium, and carbon)
 - Wavenumbers up to $k_{\theta}\rho_s$ ~1.3 included; box widths ~100 ρ_s
- Ion heat flux systematically under-predicted

GYRO under-predicts $\delta Te/Te$, but shows similar trend with a/L_{Te}

- Synthetic CECE diagnostic used on GYRO output (Holland PoP 2009)
- Even though Q_e is matched reasonably well at low a/L_{Te}, electron temperature fluctuations are under-predicted
- See S.P. Smith TP8.00004 Thursday for more GYRO, TGLF, and TGYRO results

Principle result

 Critical gradient observed for both electron thermal transport and electron temperature fluctuations

$$\widetilde{Q}_{e} = \frac{3n_{e}T_{e}}{2B}k_{\theta} \left(\frac{|\tilde{n_{e}}|}{n_{e}}|\tilde{\varphi}|\gamma_{n_{e},\varphi}\sin\alpha_{n_{e},\varphi} + \frac{|\tilde{T}_{e}|}{T_{e}}|\tilde{\varphi}|\gamma_{T_{e},\varphi}\sin\alpha_{p_{e},\varphi}\right)$$

JC Hillesheim/APS-DPP/Oc

Summary of results

• Observed effect of critical gradient threshold in multiple parameters

– $\delta Te/Te$, heat pulse analysis of χ_e , experimental power balance Q_e , local stiffness, linear growth rates

• ∇T_e -TEM identified as instability responsible for threshold

- $1/L_{Te}$ threshold, $(\delta T_e/T_e)/(\delta n_e/n_e)$, nT crossphase, spectral changes
- Characteristics of ∇T_e -TEM:
 - Low-k (ITG-scale) if driven strongly (*not* strictly intermediate-k)
 - At low-k, $\delta T_e/T_e$ steadily increases above threshold, $\delta n_e/n_e$ does not
 - No significant non-linear upshift observed

• Nonlinear GYRO predictions reproduce trends in Q_e and $\delta Te/Te$

- Q_e in reasonable agreement at low $1/L_{Te}$, shortfall at high $1/L_{Te}$
- $\delta Te/Te$ under-predicted for all $1/L_{Te}$
- Further synthetic diagnostic comparisons ongoing

UCLA