Overview of Recent DIII-D Experimental Results

by P. Gohil for the DIII-D Team

Presented at the 54th Annual APS Meeting Division of Plasma Physics Providence, Rhode Island

October 29 — November 2, 2012

DIII-D Research is Advancing the Physics Basis for Fusion Energy Production

2

DIII-D Research is Advancing the Physics Basis for Fusion Energy Production

Stationary Low-Torque ITER Baseline Discharges Are Maintained for Multiple Current Relaxation Times

Sustained RMP ELM Suppression Extended to ITER Baseline Scenario

- n=3 perturbation with internal coils
- Suppression at low collisionality using n=2 configuration
- ELM suppression also shown in helium plasmas

Modulated Phase RMP Experiments Point to Island at Top of Pedestal Inhibiting Pedestal Growth and ELMs

RMP phase flips reveal MHD structure

 Helical displacements seen in X-point SXR (difference imaging)

Experiment: SXR data

6

Nazikian, Shafer, Ferraro this Session

Modulated Phase RMP Experiments Point to Island at Top of Pedestal Inhibiting Pedestal Growth and ELMs

RMP phase flips reveal MHD structure

- Helical displacements seen in X-point SXR (difference imaging)
- Compared with vacuum field and two-fluid MHD simulation

Experiment: SXR data

Simulation: SXR Data

Modulated Phase RMP Experiments Point to Island at Top of Pedestal Inhibiting Pedestal Growth and ELMs

RMP phase flips reveal **MHD** structure

- Helical displacements seen in X-point SXR (difference imaging)
- Compared with vacuum field and two-fluid MHD simulation

Mechanism: RMP limits width of pedestal

- RMP field resonant near top of pedestal
- Island growth where $\omega_{e,\perp} \sim 0$
- Island limits inward expansion of high-gradient pedestal

Simulation: SXR Data

Experiment: SXR data

-0.6 TRIP3D-MAFOT (Vacuum) -0.8 -1.0 -1.2 12 16 14 R (m) Nazikian, Shafer, Ferraro

P.Gohil/APS-DPP/Oct. 2012

z (m)

this Session

8

Pellet Pacing in ITER Baseline Scenario Yields 12x Higher ELM Frequency

- Minimal change in confinement
- No fueling increase
- Effective impurity screening

Pellet Pacing in ITER Baseline Scenario Yields 12x Lower ELM Divertor Heat Pulse

10

Operating Range for ELM-free QH-mode Extended to ITER Relevant Torque Using External 3D Coils

P.Gohil/APS-DPP/Oct. 2012

Operating Range for ELM-free QH-mode Extended to ITER Relevant Torque Using External 3D Coils

 Achieved using external n=3 coils to drive edge rotation shear

P.Gohil/APS-DPP/Oct. 2012

Operating Range for ELM-free QH-mode Extended to ITER Relevant Torque Using External 3D Coils

 Achieved using external n=3 coils to drive edge rotation shear

QH-mode is an attractive candidate ELM-free scenario for ITER

NATIONAL FUSION FACILITY SAN DIEGO

13

P.Gohil/APS-DPP/Oct. 2012

Excellent energy confinement quality at low rotation: $H_{98y2}=1.3$

Disruption Runaway Electrons Current can be Dissipated with Sufficient High-Z Impurities

- Large runaway electron beams can be formed with sudden Ar injection
- Low Ar content gives weakly dissipating beam which can be held with ohmic coil
- High Ar content gives rapidly dissipating beam which cannot be held by ohmic coil
- Possible path for ITER to dissipate disruption RE current - with massive Ar injection into RE plateau?

Successful Integration of Key Elements of Tearing Mode Control for ITER

- Real-time control of EC power and mirror steering to q=2 surface
- PCS detects growing 2/1 tearing mode and turns on ECCD

 Real-time control provides complete stabilization of m/n=2/1 tearing mode

DIII-D Research is Advancing the Physics Basis for Fusion Energy Production

16

Critical-Gradient Transport Experiments Test Profile Stiffness Predictions

- Vary ECH location to change L-mode ∇T_e with $T_e \sim constant$
- Transport exhibits critical gradient threshold
- Sharp rise in measured T_e fluctuations is consistent with TEM dominant turbulence

Critical-Gradient Transport Experiments Test Profile Stiffness Predictions

- Vary ECH location to change L-mode ∇T_e with $T_e \sim constant$
- Transport exhibits critical gradient threshold; agrees with simulation
- Sharp rise in measured T_e fluctuations is consistent with TEM dominant turbulence

Critical-Gradient Transport Experiments Test Profile Stiffness Predictions

- Vary ECH location to change L-mode ∇T_e with $T_e \sim constant$
- Transport exhibits critical gradient threshold; agrees with simulation
- Sharp rise in measured T_e fluctuations is consistent with TEM dominant turbulence; effort underway to understand mismatch with gyrokinetic simulations

Core Transport H-mode Stiffness Experiments Support TGLF Predictions for ITER

- Stiffness refers to sharp increase in transport above a critical ∇T
- H-mode heat flux scan shows electrons are more stiff than ions
- TGLF agrees with results of dedicated H-mode stiffness experiment as it does with the broader H-mode database

Marinoni, This Session

P.Gohil/APS-DPP/Oct. 2012

DIII-D Research is Advancing the Physics Basis for Fusion Energy Production

Off-Axis NBI Enables Advanced Performance with Relaxed q_{min}~1.5 Needed for ITER/FNSF

P.Gohil/APS-DPP/Oct. 2012

q_{min}≈1.5 Scenario Appears Compatible with Radiating Mantle for Divertor Heat Flux Reduction

2D Radiation Plot

P_{RAD} doubles without significant performance degradation

23

Petrie, Thurs. AM Poster

P.Gohil/APS-DPP/Oct. 2012

Snowflake Divertor Configuration Reduces ELM and Steady-State Heat Flux

- SF configuration reduces heat flux 2-3X by flux expansion
- $\Delta W(ELM)$ reduced
- Core confinement ($H_{98v2} > 1$) and pedestal constant

P.Gohil/APS-DPP/Oct. 2012

Snowflake Divertor Configuration Reduces ELM and Steady-State Heat Flux

Wed. PM

P.Gohil/APS-DPP/Oct. 2012

Talks in this Session Present DIII-D Research Supporting ITER, Steady-State High Performance and Fusion Plasmas

• Providing solutions to key ITER issues

-	R. Nazikian	NO4.02:	Latest Results On Resonant Magnetic (RMP) Induced ELM Suppression On DIII-D
-	M. Shafer	NO4.03:	Edge Soft X-Ray Imaging Measurements
-	N. Ferraro	NO4.04:	Modeling Edge Plasma Response to 3D Fields in DIII-D
-	T. Osborne	NO4.05:	Time Evolution of the H-Mode Pedestal Characteristics in Type I ELM Discharges in DIII-D
-	M. Makowski	NO4.06:	Measurements and Modeling of the Divertor Heat Flux Width in DIII-D
-	A. Welander	NO4.10	Control of Neoclassical Tearing Modes in DIII-D
-	X. Chan	NO4.11	Neutral Beam-ion Prompt Loss Induced by Alfvén Eigenmodes in DIII-D
-	N. Commaux	NO4.12	Particle Dissemination Study During Shattered Pellet Injection in DIII-D
-	K. Burrell	NO4.15	ELM-free, Quiescent H-mode Operation in DIII-D Under Reactor-relevant Condition Using Non-Axisymmetric Magnetic Fields from Coils Outside the Toroidal Field Coil

Developing physics basis for steady-state operation

– J.	M. Park	NO4.13	Transport and Stability Characteristics of High q _{min} Steady-state Scenarios with
			Off-axis NBI

- W. Solomon NO4.14 Impact of Torque and Rotation in High Fusion Performance Plasmas

Advancing fundamental understanding of fusion plasmas

- Z. Yan NO4.07 The Dynamics of Turbulence and Flow Diving
- A. Marinoni NO4.08 Plasma Fluctuations Measurements in Ion Stiffness Experiments Using Phase Constant Imaging
- C. Petty NO4.09 Electron Transport Stiffness and Heat Pulse Propagation on DIII-D

DIII-D Program Much More Extensive Than Can Be Described Here — See Invited and ITER Talks Plus Poster Sessions

DIII-D talks on several topics in ITER oral session on Thursday PM

Review, Invited and Tutorial								
Mon.	2:00	Candy	Theory, Verification and Validation of Finite-Beta Gyrokinetics	Tutorial				
Mon.	3:30	Waltz	Search for the Missing L-mode Edge Transport and Possible Breakdown of Gyrokinetics	Invited				
Mon.	4:00	Hillesheim	Observation of a Critical Gradient Threshold for Electron Temperature Fluctuations in the DIII-D Tokamak	Invited				
Tue.	9:30	Stangeby	Reduction of Net Erosion of High-Z Divertor Surface by Local Redeposition in DIII-D	Invited				
Tue.	4:00	Pace	Energetic Ion Transport and Neutral Beam Current Drive Reduction Due to Microturbulence in Tokamaks	Invited				
Wed.	3:00	Izzo	Impurity Mixing, Radiation Asymmetry, and Runaway Electron Confinement in MGI Simulations of DIII-D and ITER	Invited				
Thurs.	9:30	Baylor	Reduction of ELM Intensity on DIII-D by On-demand Triggering With High Frequency Pellet Injection and Implications for ITER	Invited				
Thurs.	11:30	Turnbull	Comparisons of Linear and Nonlinear Plasma Response Models for Non-Axisymmetric Perturbations	Invited				
Thurs.	12:00	Moyer	Plasma Rotation and Radial Electric Field Response to Resonant Magnetic Perturbations in DIII-D	Invited				
Thurs.	3:30	Ferron	Progress Toward Fully Non-inductive Discharge Operation in DIII-D Using Off-axis Neutral Beam Injection	Invited				
Fri.	8:00	МсКее	Turbulence in Magnetically Confined Plasmas	Review				
DIII-D Poster Sessions: Tuesday Morning and Thursday Morning								

