Progress Toward Fully Noninductive Discharge Operation in DIII-D Using Off-Axis Neutral Beam Injection

by J.R. Ferron

With

C. Holcomb¹, J. Park³, F. Turco⁴, T. Luce², T. Petrie², R. Buttery², RP. Politzer², M. Lanctot¹, J. Hanson³, M. Okabayashi⁵, Y. In⁶, W. Heidbrink⁷,. R. La Haye², A. Hyatt², T. Osborne², L. Zeng⁷, E. Doyle⁸, T. Rhodes⁸, A. Garofalo², M. Makowski¹, M. Van Zeeland²

¹Lawrence Livermore National Laboratory
²General Atomics
³Oak Ridge National Laboratory
⁴Columbia University
⁵Princeton Plasma Physics Laboratory
⁶FAR TECH Inc.
⁷Univiersity of California, Irvine
⁸University of California, Los Angeles

Presented at the 54th Annual APS Meeting Division of Plasma Physics Providence, Rhode Island

October 29 — November 2, 2012

The Need for Economical Fusion Power Motivates Steady-state Tokamak Operation at High Plasma Pressure

Steady-state: 100% of the current driven noninductively, f_{NI} = 1

Future Steady-state Devices are Envisioned at Increasing Values of β_{N}

The DIII-D program aims to establish the physics basis for steady-state operation at β_{N} = 5

 Low-n, ideal-wall β_N stability limit increases with pressure profile width

Broad Current Profiles Also Improve MHD Stability at High β_N

Modeling study

Increased off-axis current

- Better coupling to the wall for improved wall stabilization
- Increased q_{min} (for fixed q₉₅)

J.R. Ferron/APS-DPP/Oct. 2012

Off-Axis Neutral Beam Injection Is Enabling Improved Access to Fully Noninductive Plasma Regimes

Experimental results

- Broader current profile: improved access to q_{min} above 2
- Broader pressure profiles with β_N up to 3.3 increase of calculated ideal MHD stability limits: $\beta_N > 4$
- Thermal confinement as expected for H-mode; total pressure limited by enhanced fast ion transport at high q_{min}

<u>Models of next step parameter regimes for DIII-D</u>

• Fully noninductive solutions at $\beta_N = 4-5$, $q_{min} > 2$: parameter regime relevant to ITER through DEMO

Off-Axis Neutral Beam Injection Is Enabling Improved Access to Fully Noninductive Plasma Regimes

Experimental results

- Broader current profile: improved access to q_{min} above 2
- Broader pressure profiles with β_N up to 3.3 increase of calculated ideal MHD stability limits: $\beta_N > 4$
- Thermal confinement as expected for H-mode; total pressure limited by enhanced fast ion transport at high q_{min}

Models of next step parameter regimes for DIII-D

• Fully noninductive solutions at β_N = 4-5, q_{min} > 2: parameter regime relevant to ITER through DEMO

One DIII-D Beamline has been Modified for Downward Vertical Steering to Provide Substantial Off-axis Current Drive

• Beamline Tilt : 0-16.4°

- Maximum total co-injected power 14.1 MW
- Maximum off-axis injected power 5 MW
 - NATIONAL FUSION FACILITY SAN DIEGO

 Beam into plasma D_α image at maximum tilt angle verifies injection geometry

Measured Off-axis NBCD In Low β_{N} Discharges Is Consistent with Classical Modeling

- β_N = 1.5, H-mode discharge with no coherent MHD
- Clear hollow NBCD profile
- Peak NBCD at ρ ~ 0.5
- Good agreement with modeling with β_N up to 2.3

J.M. Park IAEA 2012, EX/P2-13

With Off-axis Injection, the Current Profile is Stationary for Twice the Current Relaxation Time at q_{min} =1.5

- Reduced J_{NBCD}(0), low J_{ohmic}
- Does not evolve to sawtooth or n = 1 tearing mode unstable profiles for 2τ_R, unlike with only on-axis NBI
- $\beta_N H_{89}/q_{95}^2 = 0.3$ sufficient for ITER steady-state mission

With Off-Axis Injection, q_{min} can be Maintained Above 2

NATIONAL FUSION FACILIT

- Current density shifts outward as q_{min} increases
- Pressure profile broadens

With Off-Axis Injection, q_{min} can be Maintained Above 2

NATIONAL FUSION FACILIT

- Current density shifts outward as q_{min} increases
- Pressure profile broadens

Off-Axis Neutral Beam Injection Is Enabling Improved Access to Fully Noninductive Plasma Regimes

Experimental results

- ✓ Broader current profile: improved access to q_{min} above 2
- Broader pressure profiles with β_N up to 3.3 increase of calculated ideal MHD stability limits: $\beta_N > 4$
- Thermal confinement as expected for H-mode; total pressure limited by enhanced fast ion transport at high q_{min}

Models of next step parameter regimes for DIII-D

• Fully noninductive solutions at β_N = 4-5, q_{min} > 2: parameter regime relevant to ITER through DEMO

The Thermal Pressure Profile Broadens with Increasing q_{min}

- T_e profile broadens with increasing q_{min}
- Also broadening of T_i and n_e profiles

SAN DIEGO

 $\beta_{N} = 2.7$ q₉₅ = 6.8 $B_{T} = 2 T$

The Thermal Pressure Profile Broadens with Increasing q_{min}

- T_e profile broadens with increasing q_{min}
- Also broadening of T_i and n_e profiles

Off-Axis Injection Results in a Broader Calculated Fast Ion Pressure Profile

- Two otherwise identical discharges
 - One has 45% beam power off-axis

• q_{min} = 1.1

Off-Axis Injection Results in a Broader Calculated Fast Ion Pressure Profile

- Two otherwise identical discharges
 - One has 45% beam power off-axis
- q_{min} = 1.1
- Computed fast ion stored energy plus measured thermal energy exceeds value from equilibrium reconstruction
 - Fast ion diffusion (D_f) added to model
 - Diffusion probably not the completely correct model; introduces uncertainty

Discharges with off-Axis Beam Injection and $q_{min} > 2$ Have the Lowest Pressure Peaking Factors

- At fixed q_{min}, discharges with off-axis injection have the least peaked pressure profiles
- With off-axis beams
- riangle On-axis only

Discharges with off-Axis Beam Injection and $q_{min} > 2$ Have the Lowest Pressure Peaking Factors

- At fixed q_{min}, discharges with off-axis injection have the least peaked pressure profiles
- With off-axis beams
- riangle On-axis only

Discharges with off-Axis Beam Injection and $q_{min} > 2$ Have the Lowest Pressure Peaking Factors

- At fixed q_{min}, discharges with off-axis injection have the least peaked pressure profiles
- With off-axis beams
- riangle On-axis only

Broader Pressure Profiles Combined with Increased Off-axis Current at High q_{min} Result in Higher Calculated β_N Limits

- At q_{min} > 2, current density peaked off-axis couples to the conducting wall to improve stability
- Ideal MHD, low-n β_N limit with wall stabilization included
- Many time slices per shot

At $q_{min} > 2$, the Maximum Achieved $\beta_N \approx 3.3$ is Limited by the Available Power, Not Stability

No ideal modes

Tearing modes

- No 2/1
- 3/1 avoided by optimizing discharge evolution
- 7/2 & 5/2 reduce τ_E by ~15% when present

Off-Axis Neutral Beam Injection Is Enabling Improved Access to Fully Noninductive Plasma Regimes

Experimental results

- ✓ Broader current profile: improved access to q_{min} above 2
- ✓ Broader pressure profiles with β_N up to 3.3 increase of calculated ideal MHD stability limits: $\beta_N > 4$
- Thermal confinement as expected for H-mode; total pressure limited by enhanced fast ion transport at high q_{min}

Models of next step parameter regimes for DIII-D

• Fully noninductive solutions at β_N = 4-5, q_{min} > 2: parameter regime relevant to ITER through DEMO

Steady-State Scenario Discharges Have Thermal Confinement Above the Level Expected for a Typical H-Mode

 No systematic decrease observed with off-axis injection or as q_{min} increases

Steady-State Scenario Discharges Have Thermal Confinement Above the Level Expected for a Typical H-Mode

 No systematic decrease observed with off-axis injection or as q_{min} increases

Highest q_{min} Plasmas Have Global (Thermal+Fast Ion) Confinement Below the Typical H-mode Level

- Implies increased fast ion transport as q_{min} increases
 - Because thermal confinement shows no q_{min} scaling

Highest q_{min} Plasmas Have Global (Thermal+Fast Ion) Confinement Below the Typical H-mode Level

- Implies increased fast ion transport as q_{min} increases
 - Because thermal confinement shows no q_{min} scaling

Highest q_{min} Plasmas Have Global (Thermal+Fast Ion) Confinement Below the Typical H-mode Level

- Implies increased fast ion transport as q_{min} increases
 - Because thermal confinement shows no q_{min} scaling

A Change in Beam Injection Location to Off-axis Accounts for Only a Small Reduction in Confinement

Increased Fast Ion Loss at High q_{min} May be a Result of Increased Fluctuation Power in the Alfvén Eigenmode Frequency Range

- Calculated fast ion stored energy fraction increases with q_{min} ⇒ instability drive
- Fluctuation power in Alfvén
 Eigenmode frequency range generally increases with q_{min}

Off-Axis Neutral Beam Injection Is Enabling Improved Access to Fully Noninductive Plasma Regimes

Experimental results

- Broader current profile: improved access to q_{min} above 2
- ✓ Broader pressure profiles with β_N up to 3.3 increase of calculated ideal MHD stability limits: $\beta_N > 4$
- Thermal confinement as expected for H-mode; total pressure limited by enhanced fast ion transport at high q_{min}

<u>Models of next step parameter regimes for DIII-D</u>

• Fully noninductive solutions at β_N = 4-5, q_{min} > 2: parameter regime relevant to ITER through DEMO

Off-Axis Neutral Beam Injection Is Enabling Improved Access to Fully Noninductive Plasma Regimes

Experimental results

- Broader current profile: improved access to q_{min} above 2
- Broader pressure profiles with β_N up to 3.3 increase of calculated ideal MHD stability limits: $\beta_N > 4$
- Thermal confinement as expected for H-mode; total pressure limited by enhanced fast ion transport at high q_{min}

<u>Models of next step parameter regimes for DIII-D</u>

• Fully noninductive solutions at $\beta_N = 4-5$, $q_{min} > 2$: parameter regime relevant to ITER through DEMO

At a Steady-State Operating Point, The Heating and Current Drive Input Powers Balance Transport and Collisional Losses

- Goal: find externally selectable parameters so that f_{NI} is exactly 1
- β_N , q_{95} , B_T , n, external current drive profile

Extrapolation from DIII-D Steady-state Scenario Discharges Allows Scaling to $f_{NI} = 1$ without use of a Transport Model

- H_{98} confinement scaling \Rightarrow pressure
- Current sources from fits of the database to theory-based models
- Typical experimental profile shapes reflected in fitting coefficients
- Inputs $f_{p_{f}}$ H₉₈, Z_{eff} chosen to match the database

$$f_{BS} = \beta_{Nthermal} (Aq_{core} f_{pi}^{B} + Cq_{95} f_{po}^{D})$$
$$q_{core} = average q(0.0 < \rho < 0.3)$$

Extrapolation from DIII-D Steady-state Scenario Discharges Allows Scaling to $f_{NI} = 1$ without use of a Transport Model

- H_{98} confinement scaling \Rightarrow pressure
- Current sources from fits of the database to theory-based models
- Typical experimental profile shapes reflected in fitting coefficients
- Inputs $f_{p_{f}}$ H₉₈, Z_{eff} chosen to match the database

$$f_{BS} = \beta_{Nthermal} (Aq_{core} f_{pi}^{B} + Cq_{95} f_{po}^{D})$$

 q_{core} = average q(0.0 < ρ < 0.3)

$$\begin{split} f_{NBCD} &\propto P_B \frac{T_e}{n_e} \frac{q_{95}}{B_T} f(T_e, n_e, Z_{eff}, E_B, geometry, ...) \\ f_{ECCD} &\propto P_{EC} \frac{T_e}{n_e} \frac{q_{95}}{B_T} f(geometry) \end{split}$$

Extrapolation from DIII-D Steady-state Scenario Discharges Allows Scaling to $f_{NI} = 1$ without use of a Transport Model

- H_{98} confinement scaling \Rightarrow pressure
- Current sources from fits of the database to theory-based models
- Typical experimental profile shapes reflected in fitting coefficients
- Inputs $f_{p_{f}}$ H₉₈, Z_{eff} chosen to match the database

At the f_{NI} = 1 Operating Point, the Current Drive Input Power Exactly Matches the Losses Resulting from Transport

 β_N scanned to find $f_{NI} = 1$

 $n_e = 4.7 \times 10^{19} \text{ m}^{-3}$ $B_T = 1.75 \text{ H}_{98} = 1.2 \text{ q}_{95} = 5.75$

At the f_{NI} = 1 Operating Point, the Current Drive Input Power Exactly Matches the Losses Resulting from Transport

• β_N scanned to find $f_{NI} = 1$

 $n_e = 4.7 \times 10^{19} \text{ m}^{-3}$ $B_T = 1.75 \text{ H}_{98} = 1.2 \text{ q}_{95} = 5.75$

At the f_{NI} = 1 Operating Point, the Current Drive Input Power Exactly Matches the Losses Resulting from Transport

 $n_e = 4.7 \times 10^{19} \text{ m}^{-3}$ $B_T = 1.75 \text{ H}_{98} = 1.2 \text{ q}_{95} = 5.75$

Projected $f_{NI} = 1$ Operating Points in DIII-D have $\beta_N > 4$

• q_{core} increases with off-axis injection

Projected $f_{NI} = 1$ Operating Points in DIII-D have $\beta_N > 4$

Projected $f_{NI} = 1$ Operating Points in DIII-D have $\beta_N > 4$

 Compromise between reduced current drive power and increased fusion gain to choose q₉₅

An MHD Stable Solution at $\beta_N = 5$ is Projected with Optimum use of the Full Set of DIII-D Heating and Current Drive Tools

- TGLF transport model \Rightarrow T_e, T_i profiles
- Accounts for P(0)/(P) changes with heating power
- Utilizes increased current drive flexibility from proposed upgrades
 - 9 MW ECCD absorbed power
 - Second off-axis beamline
 - Beam energy 75-100 keV
- Off-axis ECCD, off-axis beam injection provides current drive for large ρ(q_{min})
 - Current profile broader than in present experiments
 - Retains broad pressure profile

An MHD Stable Solution at $\beta_N = 5$ is Projected with Optimum use of the Full Set of DIII-D Heating and Current Drive Tools

- TGLF transport model \Rightarrow T_e, T_i profiles
- Accounts for P(0)/(P) changes with heating power
- Utilizes increased current drive flexibility from proposed upgrades
 - 9 MW ECCD absorbed power
 - Second off-axis beamline
 - Beam energy 75-100 keV
- Off-axis ECCD, off-axis beam injection provides current drive for large ρ(q_{min})
 - Current profile broader than in present experiments
 - Retains broad pressure profile

$f_{NI} = 1$ Solutions in DIII-D at $\beta_N \ge 4$ are Accessible Using Off-axis Neutral Beam and Electron Cyclotron Current Drive

- Broader current and pressure profiles are obtained with off-axis neutral beam injection
 - Increases in predicted ideal-wall β_{N} limits
- Achieving high β_N with q_{min} > 2 will require optimizing for good τ_E
 - Requires understanding of fast ion transport at high q_{min} or compensation with higher thermal confinement
- Anticipated $\beta_N \approx 5$ operating point is well-placed to inform ITER, FNSF, and DEMO steady-state solutions

