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The Need for Economical Fusion Power Motivates

Steady-state Tokamak Operation at High Plasma Pressure

o Steady-state: 100% of the current driven noninductively, f,, = 1

—_

 Large bootstrap current
fraction fz5 < o8y

— Minimize the external .
current drive power - :> High pressure (By)

e High fusion gain
~ BNH/q952 —_—
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Future Steady-state Devices are Envisioned at Increasing

Values of g

ITER Q=5
Steady-state g, ~3

DEMO
Reactor
Bn ~5
FNSF
(tritium self-sufficient)

By ~4

The DIII-D program aims to establish the physics basis for
steady-state operation at g, =5
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Broad Pressure Profiles Lead to MHD Stability at High g

6 . . . .
By Ideal-wall stability limit modeling study
5 L
 Low-n, ideal-wall g, stability
limit increases with pressure 4
profile width
& 3
2 L
11 e N=1
E N= 2
0

50 25 30 35 40 45
f=P(0)/<P>

<&
~

Broader Pressure Profiles
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Broad Current Profiles Also Improve MHD Stability at High g,

Modeling study

0.005}

Y

1 2 . 3+
| _ oy
0004/ 4 %\e afa\; +
0'003'<J'B>/<B°B> BN [ N +++ * . +
0.002/ (A/cm2/G) - P
| 2 _|-+++++ No-wall limit |
0.001} | P(0)/<{P)=3 '
- ) Gmin>2 Fixed P(p)
1| oy e
0 02 04 06 08 1.0 >

Increasing off-axis current

* Betiter coupling to the wall for
Increased off-axis current —> improved wall stabilization
* Increased q,;, (for fixed q,;)
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Off-Axis Neutral Beam Injection Is Enabling Improved Access

to Fully Noninductive Plasma Regimes

Experimental results
 Broader current profile:
improved access to q,,,;,, above 2

* Broader pressure profiles with g, up to 3.3
increase of calculated ideal MHD stability limits: g, > 4

e Thermal confinement as expected for H-mode;
total pressure limited by enhanced fast ion transport at

high q,,in

Models of next step parameter regimes for DIlI-D

* Fully noninductive solutions at g = 4-5, q,,;, > 2:
parameter regime relevant to ITER through DEMO
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Experimental results

 Broader current profile:
improved access to q,,,;,, above 2
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One DIII-D Beamline has been Modified for Downward

Vertical Steering to Provide Substantial Off-axis Current Drive

« Beamline Tilt : 0-16.4° e Beam into plasma D image
at maximum {ilt angle
verifies injection geometry

0.4
0.2
0.0
—~ -0.2

N -0.4]
I
-0.6

|
-0.8 :

-1.0

 Maximum total co-injected power 14.1 MW
«  Maximum off-axis injected power 5§ MW
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Measured Off-axis NBCD In Low B Discharges Is Consistent

with Classical Modeling

144265 144268

By = 1.5, H-mode discharge 30 . , ,
with no coherent MHD Ine (P)

[ On-axis 1

e Clear hollow NBCD profile

e Peak NBCD atp ~0.5

e Good agreement with
modeling with  up to 2.3

J.M. Park IAEA 2012, EX/P2-13
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With Off-axis Injection, the Current Profile is Stationary for

Twice the Current Relaxation Time at q,,,,,=1.5

e Reduced JNBCD(O)' low Johmi(;

 Does not evolve to sawtooth or
n = 1 tearing mode unstable
profiles for 2t;, unlike with only
on-axis NBI

* By Hge/qys2 = 0.3 sufficient for
ITER steady-state mission

fN| =07

Minimum safety factor, g,

Simulated with
off-axis beams

60 I | | I
Measured loop voltage (mV)

00 02 04 06 08 1.0
p, hormalized radius
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With Off-Axis Injection, q,,;, can be Maintained Above 2

3 : : : : e Current

2 F Pn M density shifts

(1) - 7 Off-axis NBI applied - ou’rw.ard as

- : : : d..i, iNCreases

24 — qmin 7]
o [ ae-s8 With off-axis NBI/W"WN -  Pressure
1’2 B Only on-axis NBl — 7 - profile

' ' broadens

0 1 2 Time(s) 3 4
8 T T T T 100 T T T T 14f | T | T

Pressure (10° Pa)

q, safety factor

1.2}
1.0}

80|
Only on-axis NBI

60 With off-axis NBI

0.8}
40 t 0.6}
-0 0.4
0.2¢
0 I I I I 0 ] ] | | 0.0
00 02 04 06 08 1.0 00 02 04 06 08 1.0 0.0 02 04 06 08 1.0
p, normalized radius p, normalized radius p, normalized radius
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With Off-Axis Injection, q,,;, can be Maintained Above 2

3 : : : : e Current
2 F P M density shifts
oE 7 Off-axis NBI applied outward as
— -axXl I = o
0L ' ' de ' d.i iNCreases
24 — qmin =
" G0 =68 With off-axis NBI/’ . e Pressure
— 195 VY - .
fg B Only on-axis NBI VVWVM'MWN - profile
' ' broadens
0 1 2 Time (s) 3 4
8 T J T T 120 | | I |
q, safety factor 1.47 Pressure (10° Pa)
100 1 9F

Only on-axis NBI
With off-axis NBI

80k 1.0}

60 08'
20 0.6}
0.4}
2071 0.2}
0 1 1 1 ] 0 ] ] ] ] 0.0
00 02 04 06 08 10 00 02 04 06 08 1.0 0.0 0.2 04 06 08 1.0
p, normalized radius p, normalized radius
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Experimental results

v" Broader current profile:
improved access to q,,,;,, above 2

* Broader pressure profiles with g, up to 3.3
increase of calculated ideal MHD stability limits: g, > 4
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The Thermal Pressure Profile Broadens with Increasing g,

- T, profile broadens with increasing q,;;,
« Also broadening of T, and n_ profiles

8 I 5 I 1.0 I

q, Safety factor Thermal By =2.7
10°P -

pressure ( a) Qos = 6.8

B,=2T

108

10.6 F

104 ¢ off-axis 1

On-axis
10-2T beams
only

0 L1 | | 0 0.0 [ I
0.0 0.2 04 0.6 08 1.000 0.2 04 06 0.8 1.0 00 0.2 04 0.6 08 1.0

p, Normalized radius
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The Thermal Pressure Profile Broadens with Increasing g,

- T, profile broadens with increasing q,,,;,
- Also broadening of T, and n_ profiles

8 I 5 I I 1.0 I
\ —
g, Safety factor l\Te (keV) \'FI)'rhe(:r;r:j?Ie 105Pa) By = 2.7
/|4 108 ] Qg5 = 6.8
6r /] \ BT - 2 T
/ !
/|3 106 Pressure Peaking Factor
N o ——
M with | 4ophln=Pu OPu?
2t 104} off-axis
74 3.5}
'/
2 bt On-axis 3.07
_7 1 102} -
> eams 2.5¢
- only
2.0 . ,
0 I I 0 0.0 [ 1.0 15 20 25
00 0.2 04 0.6 0.8 1.00.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0 Qi

p, Normalized radius
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Off-Axis Injection Results in a Broader Calculated Fast lon

Pressure Profile

06T rrrrrrrrrrrr1rTrT3 ¢ Two otherwise identical
Fast ion pressure (10° Pa) 1 discharges

05 — One has 45% beam power
off-axis

0'42 _ * Qmin = 1.1

With off-axis beams

/

0.3

0.2F

- On-axis ]
- beams ]
0.1F only :
0.0E 1 1 1 | 1 1 1 | 1 1 | 1 1 1 ]

0.0 0.2 0.4 0.6 0.8 1.0
p, Normalized radius
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Off-Axis Injection Results in a Broader Calculated Fast lon

Pressure Profile

06fTTrprTrrprrrrrrTrTrr] ¢ Two otherwise identical
Fast ion pressure (10° Pa) discharges
0.5} — One has 45% beam power
off-axis
0.4} 1 ¢ g, =11
: 1 ¢ Computed fast ion stored
0.3§ energy plus measured thermal
: energy exceeds value from
02l equilibrium reconstruction
: ; — Fast ion diffusion (D;) added
04l : to model
] — Diffusion probably not the
00F il L LN completely correct model;

00 02 04 06 08 1.0 intfroduces uncertainty
p, Normalized radius

Dii-D
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Discharges with off-Axis Beam Injection and q,,,,, > 2 Have

the Lowest Pressure Peaking Factors

Pressure Peaking Factor

5.5 T T
fo = P(0)/(P)

5.0 29 < PN<3.9-
= 4.5 < (g5 < 6.8
S| 457 1  Atfixed q,,, discharges
@ with off-axis injection have
§ 4.01 | the least peaked pressure
B .
E 35} o A | profiles
S AR ﬁﬁ@r
gv 300 Ao La” TO};' @ With off-axis beams

2.5 @ ;‘— /\ On-axis only

2-0 | | |

1.0 1.5 2.0 2.5

Minimum Safety Factor, gnin
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Discharges with off-Axis Beam Injection and q,,,,, > 2 Have

the Lowest Pressure Peaking Factors

Pressure Peaking Factor

ST T A 2 POyP)

50f & A A 2.9 < By <3.9-
2 l LT 4.5 < Qg5 < 6.8
2| 45f T 7 1  Atfixed q,,, discharges
@ with off-axis injection have
= i
@ the least peaked pressure
&’ +# profiles
5 .
S | @ With off-axis beams
=Y R /\ On-axis onl

Py y
2-0 | | |
1.0 1.5 2.0 2.5

Minimum Safety Factor, gnin
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Discharges with off-Axis Beam Injection and q,,,,, > 2 Have

the Lowest Pressure Peaking Factors

Pressure Peaking Factor

ST T A 2 POyP)

50F & A AL 2.9 < By <3.9-
2 l Ls 4.5 < Qg5 < 6.8
2| 45f T | 1T 1 < Atfixed q,,, discharges
@ with off-axis injection have
§ | the least peaked pressure
&’ # +. profiles
D
k= ] : :
n% ! ® With off-axis beams

Y
/\ On-axis only

1.0 1.5 2.0
Minimum Safety Factor, gnin
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Broader Pressure Profiles Combined with Increased Off-axis

Current at High q,,,,, Result in Higher Calculated g, Limits

Calculated ideal-wall, n=1 g limit

4.5
 Atq,,> 2, current
density peaked
4.0 - :
off-axis couples to
2 the conducting wall
2|12 35 to improve stability
A4S
5|0
= I::. a0l e |deal MHD, low-n ﬁN
n%’ Al limit with wall
v o stabilization included
25+
 Many time slices
o o ® - :
° with off-axis beams
20 | | lee | per shot
0.6 0.7 0.8 0.9
/;, Internal inductance
<
Broader Current Profile
Diln-D

NATIONAL FUSION FACILITY
SSSSSSSS I8 " A ~ -
LR Fenon/AFS-DPP,Cct. 2012



At q,;, >2, the Maximum Achieved g, = 3.3 is Limited by the

Available Power, Not Stability

o - N W

12

H» O ~ ©

e No ideal modes

* Tearing modes
— No 2/1

. — 3/1 avoided by optimizing

discharge evolution

\: — 7/2 & 5/2 reduce Tt by ~15%

when present

_Total beam power (MW
i Off-axis beam power (MW)
ul F\/ AL ECCD power (MW)

1 2 3 4
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Experimental results

v Broader pressure profiles with g up to 3.3
increase of calculated ideal MHD stability limits: > 4

e Thermal confinement as expected for H-mode;
total pressure limited by enhanced fast ion transport at

high q,,in
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Steady-State Scenario Discharges Have Thermal Confinement

Above the Level Expected for a Typical H-Mode

 No systematic decrease observed with off-axis injection or
as q,,, increases

q95 =~ 68, ﬁN ~ 27
1 .8 [ —T W —r— 7T
g | : - L Hog '
S 1.6 | Heating power  Tss .
ks [ .
s . .
e 14 .
o [ j
IS - Off-axis beams ‘@ -
o 1.2 A i
g - A
E - A On-axis only -
S Typical H-mode level
0.8 [ i 1 i i i i L L A i L L i i i i ]
1.0 1.5 2.0 2.5
qmin

Dii-D
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Steady-State Scenario Discharges Have Thermal Confinement

Above the Level Expected for a Typical H-Mode

 No systematic decrease observed with off-axis injection or
as q,,, increases

Entire database
2.1<PBy<39,45<qy<6.8

o) | . ~ 1198

~§ 16 +Heatlng power Te 1
; | g A .
(<b) i .
€ 14 Ay K- .
£ A Oﬁ-axis‘, j
S : Ak — Ak —g a®.
c_; 1.2 i ‘+ WA; Py -
£ A On-axis A '
2 10fF---=---=--=-=--------~- —
= - Typical H-mode level

0.8 M 1 M M M M 1 M M M M 1 M M M M
1.0 1.5 2.0 2.5
qmin
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Highest q,,,;, Plasmas Have Global (Thermal+Fast lon)

Confinement Below the Typical H-mode Level

* Implies increased fast ion transport as q,,,;, increases
— Because thermal confinement shows no g, scaling

Qo5 ~ 6.8, By ~ 2.7

26 [
5 .
8 L
w 24r Te I
3 Heg =T
§ 25 [ On-axis only ® A
s |A& A .
o _ .
§20f - mooo POl
£ [ 1 .
T L Typical H-mode :
s 18 level +‘_
e . Off-axis beams | |
1.6 [ i 1 i " i i L i i " i 1 i i i i ]
1.0 1.5 2.0 2.5

’ qmin

SSSSSSSS
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Highest q,,,;, Plasmas Have Global (Thermal+Fast lon)

Confinement Below the Typical H-mode Level

* Implies increased fast ion transport as q,,,;, increases

— Because thermal confinement shows no g, scaling

Entire database
2.71<PBy<39,45<qy<6.8

26 [ ]

2.4 _ _& On-axis only

2.2 k
20 F-r----

! Typical H-mode
18 : level

Global H-mode Confinement Factor

' Off-axis beam '
16l . . e ]

1.0 15, 20 2.5
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Highest q,,,;, Plasmas Have Global (Thermal+Fast lon)

Confinement Below the Typical H-mode Level

* Implies increased fast ion transport as q,,,;, increases

— Because thermal confinement shows no g, scaling

Entire database
2.71<PBy<39,45<qy<6.8

26 [ ]

On-axis only

2.2 %k
zo}w-—--?

! Typical H-mode
18 : level

Global H-mode Confinement Factor

' Off-axis beam '
16l . . e ]

1.0 15, 20 2.5
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A Change in Beam Injection Location to Off-axis Accounts

for Only a Small Reduction in Confinement

4 S e Discharges with equal By, g,,i, = 1.1
5L * Discharge with off-axis injection

requires 13% more nevutral beam
2| power

- tereduced by 10%
(including Peeep)

0 — Hgo (=2.3) « ¢ Jp reduced by 5%
121p I(MW)' ' ' * Injection in region with higher x.,x;

- ' Beam closer to the boundary
8t | 7

- total - e
| _ i (m?s)

i [J off-axis -
0 L . L

0 1 2 3 4

Time (s) o
1.0°0.0 1.0

Din-0D 0, normalized radius
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Increased Fast lon Loss at High q,,;,, May be a Result of Increased

Fluctuation Power in the Alfvén Eigenmode Frequency Range

e Calculated fast ion stored energy ¢ Fluctuation power in Alfvén

fraction increases with q,;, = Eigenmode frequency range
instability drive generally increases with q,,;,
A
0.012 | -
c s i —_
S 0.5 Wqut ion p _0 4 q;’ h average power f>f @
§ W T 8_ 0.010 [ (NBI power) / Max(NBI power)
“— 04 . c i ®
qhg * o o A A
e 03 A 1 2 0.006 | A, A -
S e S g mas & y
s it —A— = 0,004 | :Ao A o
= (.2 -% i .
© = 0002 Aa A :
L.
0.1 . 0.000 .
1.0 1.5 2.0 2.5 1.0 1 2.0 2.5
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Experimental results
v" Broader current profile:
improved access to q,,,;,, above 2

v Broader pressure profiles with g, up to 3.3
increase of calculated ideal MHD stability limits: g, > 4

Models of next step parameter regimes for DIlI-D

* Fully noninductive solutions at g = 4-5, q,,;, > 2:
parameter regime relevant to ITER through DEMO
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Models of next step parameter regimes for DIlI-D

e Fully noninductive solutions at g = 4-5, q,,;, > 2:
parameter regime relevant to ITER through DEMO
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At a Steady-State Operating Point, The Heating and Current

Drive Input Powers Balance Transport and Collisional Losses

Heating power Current drive power

H j Optimally equal R}
Bootistrap
P.r.esst'Jre. current Plasma Current
(Stability limited) ¢ > « B;/Qys
A4
Transport Collisions

* Goal: find externally selectable parameters so that f, is exactly 1
* B 995, By, N, external current drive profile

LR Fenon/AFS-DPP,Cct. 2012



Extrapolation from DIII-D Steady-state Scenario Discharges

Allows Scaling to fy, = 1 without use of a Transport Model

e H,g confinement scaling = pressure

 Current sources from fits of the database to theory-based models
e Typical experimental profile shapes reflected in fitting coefficients
* Inputs f, Hgg, Z s chosen to match the database

c
B D o 06 - T - —

i = Brsema (Ao S 4 Cas D | 5 ", #

i 05} A i
Qeore= average q(0.0 < p <0.3) = | *

o %

2 os rF

5 MQ‘

o 2

O 03Ff 4

:‘Z’ a

2 ,

Q 02L . , ,

0.2 0.3 0.4 0.5 0.6

Model f
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Extrapolation from DIII-D Steady-state Scenario Discharges

Allows Scaling to fy, = 1 without use of a Transport Model

e H,g confinement scaling = pressure
 Current sources from fits of the database to theory-based models

e Typical experimental profile shapes reflected in fitting coefficients
* Inputs f, Hgg, Z s chosen to match the database

fBS = /))Nthermal (AQCorefplj + CQ95fplZ)

Qeore= average q(0.0 < p <0.3)

1, q
frsen & Py n—ﬁf(TQ,ne,Zeﬁp,EB,geOmetry,...)
e T

1, 905

f (geometry)
ne BT

fECCD x PEC
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Extrapolation from DIII-D Steady-state Scenario Discharges

Allows Scaling to fy, = 1 without use of a Transport Model

e H,g confinement scaling = pressure

 Current sources from fits of the database to theory-based models
e Typical experimental profile shapes reflected in fitting coefficients
* Inputs f, Hgg, Z s chosen to match the database

fBS = /))Nthermal (AQCorefplj + CQ95fplZ)
1.0

—————%
Qeore= average q(0.0 < p <0.3) 09 fai A ;
0.8 P A%H i

a7 _

I, q
fasep € By === f(T,,n,,Z,,,Ey;, geometry,...) o |

ne BT /4
T 0.6 f #
frcen % P~ f(geometry) L
n, B, : /Ké
0.4 L~

— 04 05 06 0.7 08 09 1.0
fNI — fBS + fNBCD + fECCD Model f,
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At the f, = 1 Operating Point, the Current Drive Input Power

Exactly Matches the Losses Resulting from Transport

'Ilnplu t IIDOVI\IerI(MIW)I ] ¢ PByscanned to find fy, =1

22
18

14 ¢

10b Pecen =335 (MW)

36 40 44 48
BN

ne=4.7X1 019 m-::3 BT=1 .75T H98=1 .2 q95=5.75
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At the f, = 1 Operating Point, the Current Drive Input Power

Exactly Matches the Losses Resulting from Transport

b I/I)/I
1.0 22

fni 18|

Tnput Power (MW) * By scanned to find fy, = 1

e Constraint: Py 44ine= Pcp

0.8 ¢ 1 14¢
Current Fractions | 4o b Peccp =3.35 (MW]

36 40 44 48
fCD - BN

SSSSSSSS
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At the f, = 1 Operating Point, the Current Drive Input Power

Exactly Matches the Losses Resulting from Transport

1.0

'Ilnptljt FI’OV\IIEI‘ I(M\IIV) '

By scanned to find fy, = 1

Constraint: P, g4ine= Pcp

SSSSSSSS

fos = fep = 0.5

fzs scales more slowly
than B,

Increase in fast ion stored
energy with P,
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Projected f, = 1 Operating Points in DIlI-D have g, > 4

d.ore iINCreases with off-axis injection

2.2 I | | | | 5.0

p, Jdcore
20t"B 4.8}

(off-axis) n, =4.7x10'" m-3
1.8r=5M 4.6}

, B,=1.75T
1.6 -7 44}
- .- H98 - 1 .2
L4 _-~"omw 1 42
12l v 40l o 4
50 54 58 62 50 54 58 6.2
Qgs Qgs

Dili-D
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Projected f, = 1 Operating Points in DIlI-D have g, > 4

d.ore iINCreases with off-axis injection

1T T 1
0.6} tep Curre.nt
= _ Fractions
05 —
0.4} fgs fneco
03¢
0.2+
o1t feccop
0.0 I
5.0 5.4 5.8 6.2

Qo5

Dili-D

NATIONAL FUSION FACILITY

SAN

DDDDD

2.2 T T T T T 5.0
P Qeore

20+"B . 4.8}
(off-axis)

1.8t=5 M 4.6+

1.6¢

1.4
1.2

4.4}

4.2}
4.0

24
22
20
18
16
14}
12
10

5.0

5.0

5.4

5.8 6.2
Qos
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Projected f, = 1 Operating Points in DIlI-D have g, > 4

e Compromise between reduced current drive power and
increased fusion gain to choose qq;

1T 1T [ [ |22 7 7 v T T 150 7 v 1t 1 1
0.61 ICP Current Fractions; , 4| | 48l

—_

n, =4.7x10'" m-3

05 1.8} 1 4.6} _
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1.6¢ =5MW__ -~ 1 4.4+ H. =12
f _-" 98 .
041 foq NBCD 1 1.4} -~ 1 4.2}
-~ 0OMW
1.2 | | | | | 4.0
0.3} 1 24¢
22+ 04t
0.2l 20
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01t ECCD A~ 1 14} -
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12 i PECCD=335MW 7 Q=5
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Dili-D
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An MHD Stable Solution at g, = 5 is Projected with Optimum

use of the Full Set of DIlI-D Heating and Current Drive Tools

7

6 1120
5 |

41 180
3 N

2 N

11 |

0 ' ' ' |146821 0

g _Curr'ent E'xperimentI 120
5| |

4t 180
3 5

9L 140
1 N

0

0

0
0 02 04 06 08 1.0
p, hormalized radius

e TGLF fransport model = T_, T, profiles

— Accounts for P(0)/{P) changes with
heating power

* Utilizes increased current drive flexibility
from proposed upgrades
* 9 MW ECCD absorbed power
» Second off-axis beamline
e Beam energy 75-100 keV

o Off-axis ECCD, off-axis beam injection
provides current drive for large p(q,,in)

— Current profile broader than in
present experiments

— Retains broad pressure profile

J.R. Ferron/APS-DPP/Oct. 2012



An MHD Stable Solution at g, = 5 is Projected with Optimum

use of the Full Set of DIlI-D Heating and Current Drive Tools

7 T T T T i
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21
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0 I l I l 0
60
50 | 1120
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80
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0
00 02 04 06 08 1.0
p, hormalized radius

* TGLF transport model = T, T, profiles

— Accounts for P(0)/(P) changes with
heating power

o Utilizes increased current drive flexibility
from proposed upgrades
e 9 MW ECCD absorbed power
e Second off-axis beamline
e Beam energy 75-100 keV

o Off-axis ECCD, off-axis beam injection
provides current drive for large p(q,,,)

— Current profile broader than in
present experiments

— Retains broad pressure profile

J.R. Ferron/APS-DPP/Oct. 2012



fy = 1 Solutions in DIII-D at B 2 4 are Accessible Using

Off-axis Neuiral Beam and Electron Cycloiron Current Drive

 Broader current and pressure
profiles are obtained with

off-axis nevutral beam injection 10

— Increases in predicted ideal-wall . / \ With-Wall
By imMifs '

* Achieving high gy with q,,,;, > 2 will
require optimizing for good t;

— Requires understanding of fast ion
transport at high g, Or
compensation with higher
thermal confinement

Scaled Fusion Power

* Anticipated g = 5 operating point
is well-placed to inform ITER, FNSF, g,ehc_[)ri\,e'c,’1 Current —>
and DEMO steady-state solutions
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