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•  Large bootstrap current 
fraction fBS ∝ q95βN 

–  Minimize the external 
current drive power 

•  High fusion gain 
~ βNH/q95

2 

The Need for Economical Fusion Power Motivates 
Steady-state Tokamak Operation at High Plasma Pressure 

High pressure (βN) 

•  Steady-state: 100% of the current driven noninductively, fNI = 1 
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Future Steady-state Devices are Envisioned at Increasing 
Values of βN 

The DIII-D program aims to establish the physics basis for 
steady-state operation at βN = 5 

FNSF 
(tritium self-sufficient) 
βN ~4  

DEMO 
Reactor 
βN ~5 

ITER Q=5 
Steady-state βN ~3 

DIII-D 



J.R. Ferron/APS-DPP/Oct. 2012 

Broad Pressure Profiles Lead to MHD Stability at High βN 

•  Low-n, ideal-wall βN stability 
limit increases with pressure 
profile width 

βN Ideal-wall stability limit modeling study 

n = 1 
n = 2 
 

fp=P(0)/〈P〉 

Broader Pressure Profiles 
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Broad Current Profiles Also Improve MHD Stability at High βN 

Modeling study 

•  Better coupling to the wall for 
improved wall stabilization 

•  Increased qmin (for fixed q95) 

Increased off-axis current 

Increasing off-axis current 
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Off-Axis Neutral Beam Injection Is Enabling Improved Access 
to Fully Noninductive Plasma Regimes 

Experimental results 
•  Broader current profile: 

improved access to qmin above 2  
•  Broader pressure profiles with βN up to 3.3  

increase of calculated ideal MHD stability limits: βN > 4 
•  Thermal confinement as expected for H-mode; 

total pressure limited by enhanced fast ion transport at 
high qmin 

Models of next step parameter regimes for DIII-D 
•  Fully noninductive solutions at βN = 4-5, qmin > 2: 

parameter regime relevant to ITER through DEMO 
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One DIII-D Beamline has been Modified for Downward 
Vertical Steering to Provide Substantial Off-axis Current Drive 

•  Beamline Tilt : 0-16.4° •  Beam into plasma Dα image 
at maximum tilt angle 
verifies injection geometry 
 

 

•  Maximum total co-injected power 14.1 MW 
•  Maximum off-axis injected power 5 MW 
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Measured Off-axis NBCD In Low βN Discharges Is Consistent 
with Classical Modeling 

•  βN = 1.5, H-mode discharge 
with no coherent MHD 

•  Clear hollow NBCD profile  

•  Peak NBCD at ρ ~ 0.5 

•  Good agreement with  
modeling with βN up to 2.3 

J.M. Park IAEA 2012, EX/P2-13 

	



Experiment 

Model 

Model 

Experiment 
Model 

Experiment 
Model 
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With Off-axis Injection, the Current Profile is Stationary for 
Twice the Current Relaxation Time at qmin=1.5 

•  Reduced JNBCD(0), low Johmic  
•  Does not evolve to sawtooth or  

n = 1 tearing mode unstable 
profiles for 2τR, unlike with only 
on-axis NBI 

•  βN H89/q95
2 = 0.3 sufficient for 

ITER steady-state mission 

Time (s) 

2τR 

fNI =0.7  

With off-axis beams 

βN  

Minimum safety factor, qmin 

Simulated with 
off-axis beams 
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With Off-Axis Injection, qmin can be Maintained Above 2 

•  Current 
density shifts 
outward as 
qmin increases 

•  Pressure 
profile 
broadens 

βN 

Off-axis NBI applied 

With off-axis NBI 

Only on-axis NBI 

qmin 

Time (s) 

q, safety factor 2.0 

qmin=2.4 

Jφ (A/cm2) 

ρ, normalized radius ρ, normalized radius 

Pressure (105 Pa) 

q95 ≈6.8 

Only on-axis NBI 

With off-axis NBI 

ρ, normalized radius 
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q95 ≈6.8 

Only on-axis NBI 

With off-axis NBI 

With Off-Axis Injection, qmin can be Maintained Above 2 

•  Current 
density shifts 
outward as 
qmin increases 

•  Pressure 
profile 
broadens 

βN 

Off-axis NBI applied 

With off-axis NBI 

Only on-axis NBI 

qmin 

Time (s) 

q, safety factor 

2.0 

qmin=2.4 

Jφ (A/cm2) 

ρ, normalized radius ρ, normalized radius 

1.4 Pressure (105 Pa) 
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Off-Axis Neutral Beam Injection Is Enabling Improved Access 
to Fully Noninductive Plasma Regimes 

Experimental results 
  Broader current profile: 

improved access to qmin above 2  
•  Broader pressure profiles with βN up to 3.3  

increase of calculated ideal MHD stability limits: βN > 4 
•  Thermal confinement as expected for H-mode; 

total pressure limited by enhanced fast ion transport at 
high qmin 

Models of next step parameter regimes for DIII-D 
•  Fully noninductive solutions at βN = 4-5, qmin > 2: 

parameter regime relevant to ITER through DEMO 
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The Thermal Pressure Profile Broadens with Increasing qmin 

 
βN = 2.7 
q95 = 6.8 
BT = 2 T 

q, Safety factor Te (keV) Thermal 
pressure (105 Pa) 

qmin=2.0 
2.4 With 

off-axis 
beams 

On-axis 
beams 
only 

ρ, Normalized radius 

•  Te profile broadens with increasing qmin 

•  Also broadening of Ti and ne profiles 
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The Thermal Pressure Profile Broadens with Increasing qmin 

 
βN = 2.7 
q95 = 6.8 
BT = 2 T 

q, Safety factor Te (keV) Thermal 
pressure (105 Pa) 

qmin=0.9 

1.4 
With 
off-axis 
beams 

On-axis 
beams 
only 

ρ, Normalized radius 

2 

2.4 

•  Te profile broadens with increasing qmin 

•  Also broadening of Ti and ne profiles 

fpth = Pth (0)/〈Pth〉 

qmin 

Pressure Peaking Factor 
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Off-Axis Injection Results in a Broader Calculated Fast Ion 
Pressure Profile 

•  Two otherwise identical 
discharges 
–  One has 45% beam power 

off-axis 

•  qmin = 1.1 

Fast ion pressure (105 Pa) 

With off-axis beams 

On-axis 
beams 
only 

ρ, Normalized radius 
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Off-Axis Injection Results in a Broader Calculated Fast Ion 
Pressure Profile 

•  Two otherwise identical 
discharges 
–  One has 45% beam power 

off-axis 

•  qmin = 1.1 
•  Computed fast ion stored 

energy plus measured thermal 
energy exceeds value from 
equilibrium reconstruction 
–  Fast ion diffusion (Df) added 

to model 

–  Diffusion probably not the 
completely correct model; 
introduces uncertainty 
 

Fast ion pressure (105 Pa) 

With off-axis beams 

Df = 0 

Df = 0.6, 
1.0 m2/s 

ρ, Normalized radius 

On-axis beams only 
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Discharges with off-Axis Beam Injection and qmin > 2 Have 
the Lowest Pressure Peaking Factors 

•  At fixed qmin, discharges 
with off-axis injection have 
the least peaked pressure 
profiles 

With off-axis beams 

On-axis only 
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Broader Pressure Profiles Combined with Increased Off-axis 
Current at High qmin Result in Higher Calculated βN Limits 

J.R.Ferron et al. , 53rd Annual Meeting of the APS Division of Plasma Physics, 2011 

•  At qmin > 2, current 
density peaked 
off-axis couples to 
the conducting wall 
to improve stability 
 

•  Ideal MHD, low-n βN 
limit with wall 
stabilization included 
 

•  Many time slices 
per shot 

On-axis 

βN > 4 
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At qmin >2, the Maximum Achieved βN ≈ 3.3 is Limited by the 
Available Power, Not Stability 

 
• No ideal modes 
 
• Tearing modes 

–  No 2/1 

–  3/1 avoided by optimizing 
discharge evolution 

–  7/2 & 5/2 reduce τE by ~15% 
when present 

βN 

Total beam power (MW) 

Off-axis beam power (MW) 

ECCD power (MW) 

qmin 

Time (s) 
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Off-Axis Neutral Beam Injection Is Enabling Improved Access 
to Fully Noninductive Plasma Regimes 

Experimental results 
  Broader current profile: 

improved access to qmin above 2  
  Broader pressure profiles with βN up to 3.3  

increase of calculated ideal MHD stability limits: βN > 4 
•  Thermal confinement as expected for H-mode; 

total pressure limited by enhanced fast ion transport at 
high qmin 

Models of next step parameter regimes for DIII-D 
•  Fully noninductive solutions at βN = 4-5, qmin > 2: 

parameter regime relevant to ITER through DEMO 
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Steady-State Scenario Discharges Have Thermal Confinement 
Above the Level Expected for a Typical H-Mode 

•  No systematic decrease observed with off-axis injection or 
as qmin increases 

qmin 

Wth 

Heating power τ98 

1 ≈ H98 

q95 ≈ 6.8, βN ≈ 2.7 

Off-axis beams 

On-axis only 

Typical H-mode level Th
er

m
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Steady-State Scenario Discharges Have Thermal Confinement 
Above the Level Expected for a Typical H-Mode 

•  No systematic decrease observed with off-axis injection or 
as qmin increases 

qmin 

Off-axis 

On-axis 

Typical H-mode level 

Entire database 
2.7 < βN < 3.9, 4.5 < q95 < 6.8 
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Heating power τ98 

1 ≈ H98 
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Highest qmin Plasmas Have Global (Thermal+Fast Ion) 
Confinement Below the Typical H-mode Level 

•  Implies increased fast ion transport as qmin increases 
–  Because thermal  confinement shows no qmin scaling 

q95 ≈ 6.8, βN ≈ 2.7 

qmin 

H89 = 
τE 
τ89 

On-axis only 

Typical H-mode 
level 

Off-axis beams G
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ρ, normalized radius 

•  Discharges with equal βN, qmin ≈ 1.1 
•  Discharge with off-axis injection 

requires 13% more neutral beam 
power 
–  τE reduced by 10% 

(including PECCD) 

–  H89 (≈2.3) ∝ τE          reduced by 5% 

•  Injection in region with higher χe,χi 
closer to the boundary 

A Change in Beam Injection Location to Off-axis Accounts 
for Only a Small Reduction in Confinement 

P

Time (s) 

5 

0 

5 

0 

χi (m2/s) χe (m2/s) 

0.0 1.0 0.0 1.0 
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Increased Fast Ion Loss at High qmin May be a Result of Increased 
Fluctuation Power in the Alfvén Eigenmode Frequency Range 

J.R.Ferron et al. , 53rd Annual Meeting of the APS Division of Plasma Physics, 2011 
 

•  Calculated fast ion stored energy 
fraction increases with qmin ⇒ 
instability drive 

Wfast !ion
W

,!Df = 0
!n!average!power!f > fTAE

(NBI!power) /Max(NBI!power)

qmin qmin 

TA
E 

flu
ct

ua
tio

n 
po

we
r  

Fa
st
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•  Fluctuation power in Alfvén 
Eigenmode frequency range 
generally increases with qmin 
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Off-Axis Neutral Beam Injection Is Enabling Improved Access 
to Fully Noninductive Plasma Regimes 

Experimental results 
  Broader current profile: 

improved access to qmin above 2  
  Broader pressure profiles with βN up to 3.3  

increase of calculated ideal MHD stability limits: βN > 4 
  Thermal confinement as expected for H-mode; 

total pressure limited by enhanced fast ion transport at 
high qmin 

Models of next step parameter regimes for DIII-D 
•  Fully noninductive solutions at βN = 4-5, qmin > 2: 

parameter regime relevant to ITER through DEMO 
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At a Steady-State Operating Point, The Heating and Current 
Drive  Input Powers Balance Transport and Collisional Losses 

•  Goal: find externally selectable parameters so that fNI is exactly 1 
•  βN, q95, BT, n, external current drive profile 

J.R.Ferron et al. , 53rd Annual Meeting of the APS Division of Plasma Physics, 2011 

Plasma Current 
 ∝ BT/q95 

Transport 

Current drive power 

Pressure 
(Stability limited) 

Heating power 

Collisions 

Bootstrap 
current 

Optimally equal 
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Extrapolation from DIII-D Steady-state Scenario Discharges 
Allows Scaling to fNI = 1 without use of a Transport Model 

)( 95
D
po

B
picoreNthermalBS fCqfAqf += β

qcore= average q(0.0 < ρ < 0.3) 

fBS 

Model fBS 

•  H98 confinement scaling ⇒ pressure 
•  Current sources from fits of the database to theory-based models 
•  Typical experimental profile shapes reflected in fitting coefficients 
•  Inputs fp, H98, Zeff chosen to match the database 

Bo
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Extrapolation from DIII-D Steady-state Scenario Discharges 
Allows Scaling to fNI = 1 without use of a Transport Model 

J.R.Ferron et al. , 53rd Annual Meeting of the APS Division of Plasma Physics, 2011 

)( 95
D
po

B
picoreNthermalBS fCqfAqf += β

)(95 geometryf
B
q

n
TPf

Te

e
ECECCD ∝

,...),,,,(95 geometryEZnTf
B
q

n
TPf Beffee

Te

e
BNBCD ∝

qcore= average q(0.0 < ρ < 0.3) 

•  H98 confinement scaling ⇒ pressure 
•  Current sources from fits of the database to theory-based models 
•  Typical experimental profile shapes reflected in fitting coefficients 
•  Inputs fp, H98, Zeff chosen to match the database 
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Extrapolation from DIII-D Steady-state Scenario Discharges 
Allows Scaling to fNI = 1 without use of a Transport Model 

)( 95
D
po

B
picoreNthermalBS fCqfAqf += β

)(95 geometryf
B
q

n
TPf

Te

e
ECECCD ∝

,...),,,,(95 geometryEZnTf
B
q

n
TPf Beffee

Te

e
BNBCD ∝

qcore= average q(0.0 < ρ < 0.3) 

ECCDNBCDBSNI ffff ++=

fNI 

Model fNI 

•  H98 confinement scaling ⇒ pressure 
•  Current sources from fits of the database to theory-based models 
•  Typical experimental profile shapes reflected in fitting coefficients 
•  Inputs fp, H98, Zeff chosen to match the database 
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At the fNI = 1 Operating Point, the Current Drive Input Power 
Exactly Matches the Losses Resulting from Transport 

•  βN scanned to find fNI = 1 

ne=4.7x1019 m-3   BT=1.75T   H98=1.2   q95=5.75 
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At the fNI = 1 Operating Point, the Current Drive Input Power 
Exactly Matches the Losses Resulting from Transport 

•  βN scanned to find fNI = 1 

•  Constraint: Pheating= PCD 

ne=4.7x1019 m-3   BT=1.75T   H98=1.2   q95=5.75 

•  fBS ≈ fCD ≈ 0.5 

•  fBS scales more slowly 
than βN 

•  Increase in fast ion stored 
energy with PB 
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Projected fNI = 1 Operating Points in DIII-D have  βN > 4 

ne =4.7x1019 m-3 

BT = 1.75 T 

H98 = 1.2 

•  qcore increases with off-axis injection 

q95 q95 
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Projected fNI = 1 Operating Points in DIII-D have  βN > 4 

Current Fractions fCD 

fBS 
fNBCD 

fECCD 

qcore 

PB (off-axis) 
= 5 MW 

0 MW 

q95 q95 q95 

Input Powers (MW) 

Pheat 

PB 

PECCD=3.35MW 

βN 

ITER Steady-state 
Q=5 

G = βN H89P 

q95
 2 

	



ne =4.7x1019 m-3 

BT = 1.75 T 

H98 = 1.2 

•  Compromise between reduced current drive power and 
increased fusion gain to choose q95 
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An MHD Stable Solution at βN = 5 is Projected with Optimum 
use of the Full Set of DIII-D Heating and Current Drive Tools 

•  TGLF transport model ⇒ Te, Ti profiles 
–  Accounts for P(0)/〈P〉 changes with 

heating power 
 

•  Utilizes increased current drive flexibility 
from proposed upgrades 

•  9 MW ECCD absorbed power 

•  Second off-axis beamline 

•  Beam energy 75-100 keV 
 

•  Off-axis ECCD, off-axis beam injection 
provides current drive for large ρ(qmin) 
–  Current profile broader than in 

present experiments 

–  Retains broad pressure profile 
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fNI = 1 Solutions in DIII-D at βN ≥ 4 are Accessible Using 
Off-axis Neutral Beam and Electron Cyclotron Current Drive 

•  Broader current and pressure 
profiles are obtained with 
off-axis neutral beam injection 

–  Increases in predicted ideal-wall 
βN limits 

•  Achieving high βN with qmin > 2 will 
require optimizing for good τE 

–  Requires understanding of fast ion 
transport at high qmin or 
compensation with higher 
thermal confinement 

•  Anticipated βN ≈ 5 operating point 
is well-placed to inform ITER, FNSF, 
and DEMO steady-state solutions 
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