Progress Toward Fully Noninductive Discharge Operation in DIII-D Using Off-Axis Neutral Beam Injection

by

J.R. Ferron

With

C. Holcomb¹, J. Park³, F. Turco⁴, T. Luce²,
T. Petrie², R. Buttery², RP. Politzer², M. Lanctot¹,
J. Hanson³, M. Okabayashi⁵,
Y. In⁶, W. Heidbrink⁷, R. La Haye²,
A. Hyatt⁵, T. Osborne², L. Zeng⁷,
E. Doyle⁸, T. Rhodes⁸, A. Garofalo²,
M. Makowski¹, M. Van Zeeland²

¹Lawrence Livermore National Laboratory
²General Atomics
³Oak Ridge National Laboratory
⁴Columbia University
⁵Princeton Plasma Physics Laboratory
⁶FAR TECH Inc.
⁷University of California, Irvine
⁸University of California, Los Angeles

Presented at the
54th Annual APS Meeting
Division of Plasma Physics
Providence, Rhode Island

October 29 — November 2, 2012
The Need for Economical Fusion Power Motivates Steady-state Tokamak Operation at High Plasma Pressure

- Steady-state: 100% of the current driven noninductively, $f_{NI} = 1$

- Large bootstrap current fraction $f_{BS} \propto q_{95} \beta_N$
 - Minimize the external current drive power

- High fusion gain
 $\sim \beta_N H / q_{95}^2$

High pressure (β_N)
Future Steady-state Devices are Envisioned at Increasing Values of β_N

The DIII-D program aims to establish the physics basis for steady-state operation at $\beta_N = 5$
Broad Pressure Profiles Lead to MHD Stability at High β_N

- Low-n, ideal-wall β_N stability limit increases with pressure profile width
Broad Current Profiles Also Improve MHD Stability at High β_N

Modeling study

- Increased off-axis current

- Better coupling to the wall for improved wall stabilization
- Increased q_{min} (for fixed q_{95})

DIII-D
NATIONAL FUSION FACILITY
SAN DIEGO

Off-Axis Neutral Beam Injection Is Enabling Improved Access to Fully Noninductive Plasma Regimes

Experimental results

- Broader current profile: improved access to q_{min} above 2
- Broader pressure profiles with β_N up to 3.3
 increase of calculated ideal MHD stability limits: $\beta_N > 4$
- Thermal confinement as expected for H-mode;
 total pressure limited by enhanced fast ion transport at high q_{min}

Models of next step parameter regimes for DIII-D

- Fully noninductive solutions at $\beta_N = 4-5$, $q_{\text{min}} > 2$:
 parameter regime relevant to ITER through DEMO
Experimental results

- **Broader current profile:** improved access to q_{min} above 2
- Broader pressure profiles with β_N up to 3.3
- Increase of calculated ideal MHD stability limits: $\beta_N > 4$
- Thermal confinement as expected for H-mode; total pressure limited by enhanced fast ion transport at high q_{min}

Models of next step parameter regimes for DIII-D

- Fully noninductive solutions at $\beta_N = 4-5, q_{\text{min}} > 2$: parameter regime relevant to ITER through DEMO
One DIII-D Beamline has been Modified for Downward Vertical Steering to Provide Substantial Off-axis Current Drive

- Beamline Tilt: 0-16.4°
- Maximum total co-injected power: 14.1 MW
- Maximum off-axis injected power: 5 MW

Beam into plasma D_α image at maximum tilt angle verifies injection geometry.
Measured Off-axis NBCD In Low β_N Discharges Is Consistent with Classical Modeling

- $\beta_N = 1.5$, H-mode discharge with no coherent MHD
- Clear hollow NBCD profile
- Peak NBCD at $\rho \sim 0.5$
- Good agreement with modeling with β_N up to 2.3

J.M. Park IAEA 2012, EX/P2-13
With Off-axis Injection, the Current Profile is Stationary for Twice the Current Relaxation Time at $q_{\text{min}}=1.5$

- Reduced $J_{\text{NBCD}}(0)$, low J_{ohmic}
- Does not evolve to sawtooth or $n=1$ tearing mode unstable profiles for $2\tau_R$, unlike with only on-axis NBI
- $\beta_N \frac{H_{89}}{q_{95}}^2 = 0.3$ sufficient for ITER steady-state mission
With Off-Axis Injection, q_{min} can be Maintained Above 2

- Current density shifts outward as q_{min} increases
- Pressure profile broadens
With Off-Axis Injection, \(q_{\text{min}} \) can be Maintained Above 2

- Current density shifts outward as \(q_{\text{min}} \) increases
- Pressure profile broadens

\(\beta_N \)

\(q_{\text{min}} \)

\(q_{95}=6.8 \)

\(\rho \), normalized radius

\(J_\phi \) (A/cm\(^2\))

\(\rho \), normalized radius

\(\text{Pressure (10}^5 \text{ Pa)} \)

\(\text{Time (s)} \)
Experimental results
✓ Broader current profile:
improved access to q_{min} above 2
• Broader pressure profiles with β_N up to 3.3
increase of calculated ideal MHD stability limits: $\beta_N > 4$
• Thermal confinement as expected for H-mode;
total pressure limited by enhanced fast ion transport at
high q_{min}

Models of next step parameter regimes for DIII-D
• Fully noninductive solutions at $\beta_N = 4-5$, $q_{\text{min}} > 2$:
parameter regime relevant to ITER through DEMO
The Thermal Pressure Profile Broadens with Increasing q_{min}

- T_e profile broadens with increasing q_{min}
- Also broadening of T_i and n_e profiles

$\beta_N = 2.7$
$q_{95} = 6.8$
$B_T = 2 \, T$

ρ, Normalized radius

q, Safety factor

T_e (keV)

Thermal pressure ($10^5 \, \text{Pa}$)

With off-axis beams

On-axis beams only

The Thermal Pressure Profile Broadens with Increasing q_{min}

- T_e profile broadens with increasing q_{min}
- Also broadening of T_i and n_e profiles

$\beta_N = 2.7$
$q_{95} = 6.8$
$B_T = 2$ T

ρ_d, Normalized radius

- T_e (keV)
- Thermal pressure (10^5 Pa)

With off-axis beams

Pressure Peaking Factor

$f_{\text{pth}} = P_{\text{th}}(0)/\langle P_{\text{th}} \rangle$
Off-Axis Injection Results in a Broader Calculated Fast Ion Pressure Profile

- Two otherwise identical discharges
 - One has 45% beam power off-axis
- $q_{\text{min}} = 1.1$
Off-Axis Injection Results in a Broader Calculated Fast Ion Pressure Profile

- Two otherwise identical discharges
 - One has 45% beam power off-axis
- $q_{\text{min}} = 1.1$
- Computed fast ion stored energy plus measured thermal energy exceeds value from equilibrium reconstruction
 - Fast ion diffusion (D_f) added to model
 - Diffusion probably not the completely correct model; introduces uncertainty
Discharges with off-Axis Beam Injection and $q_{\text{min}} > 2$ Have the Lowest Pressure Peaking Factors

At fixed q_{min}, discharges with off-axis injection have the least peaked pressure profiles.

- With off-axis beams
- On-axis only

Graph Details:
- $f_p = P(0)/\langle P \rangle$
- $2.9 < \beta_N < 3.9$
- $4.5 < q_{95} < 6.8$
Discharges with off-Axis Beam Injection and $q_{\text{min}} > 2$ Have the Lowest Pressure Peaking Factors

- At fixed q_{min}, discharges with off-axis injection have the least peaked pressure profiles
- With off-axis beams
- On-axis only

$f_p = \frac{P(0)}{\langle P \rangle}$

$2.9 < \beta_N < 3.9$

$4.5 < q_{95} < 6.8$
Discharges with off-Axis Beam Injection and $q_{\text{min}} > 2$ Have the Lowest Pressure Peaking Factors

At fixed q_{min}, discharges with off-axis injection have the least peaked pressure profiles.

- With off-axis beams
- On-axis only
Broader Pressure Profiles Combined with Increased Off-axis Current at High q_{min} Result in Higher Calculated β_N Limits

- At $q_{\text{min}} > 2$, current density peaked off-axis couples to the conducting wall to improve stability
- Ideal MHD, low-n β_N limit with wall stabilization included
- Many time slices per shot

![Diagram showing calculated ideal-wall, n=1 β_N limit with varying ℓ_i, Internal inductance and Broader Current Profile.](image)
At $q_{\text{min}} > 2$, the Maximum Achieved $\beta_N \approx 3.3$ is Limited by the Available Power, Not Stability

- No ideal modes
- Tearing modes
 - No 2/1
 - 3/1 avoided by optimizing discharge evolution
 - 7/2 & 5/2 reduce τ_E by $\sim 15\%$ when present
Experimental results

- Broader current profile: improved access to q_{min} above 2
- Broader pressure profiles with β_N up to 3.3

Increase of calculated ideal MHD stability limits: $\beta_N > 4$

- Thermal confinement as expected for H-mode; total pressure limited by enhanced fast ion transport at high q_{min}

Models of next step parameter regimes for DIII-D

- Fully noninductive solutions at $\beta_N = 4-5$, $q_{\text{min}} > 2$; parameter regime relevant to ITER through DEMO
Steady-State Scenario Discharges Have Thermal Confinement Above the Level Expected for a Typical H-Mode

- No systematic decrease observed with off-axis injection or as q_{min} increases

![Graph showing thermal confinement factor vs. q_{min}]
Steady-State Scenario Discharges Have Thermal Confinement Above the Level Expected for a Typical H-Mode

- No systematic decrease observed with off-axis injection or as q_{min} increases

\[\frac{W_{\text{th}}}{\text{Heating power}} \times \frac{1}{\tau_{98}} \approx h_{98} \]

Entire database
$2.7 < \beta_N < 3.9$, $4.5 < q_{95} < 6.8$
Highest q_{min} Plasmas Have Global (Thermal+Fast Ion) Confinement Below the Typical H-mode Level

- Implies increased fast ion transport as q_{min} increases
 - Because thermal confinement shows no q_{min} scaling

\[q_{95} \approx 6.8, \beta_N \approx 2.7 \]

![Graph showing confinement factor vs. q_{min}](image)
Highest q_{min} Plasmas Have Global (Thermal+Fast Ion) Confinement Below the Typical H-mode Level

- Implies increased fast ion transport as q_{min} increases
 - Because thermal confinement shows no q_{min} scaling

Entire database
$2.7 < \beta_N < 3.9$, $4.5 < q_{95} < 6.8$
Highest q_{min} Plasmas Have Global (Thermal+Fast Ion) Confinement Below the Typical H-mode Level

- Implies increased fast ion transport as q_{min} increases
 - Because thermal confinement shows no q_{min} scaling

Entire database
$2.7 < \beta_N < 3.9$, $4.5 < q_{95} < 6.8$

Global H-mode Confinement Factor

$$H_{89} = \frac{\tau_E}{\tau_{89}}$$

On-axis only
Typical H-mode level
Off-axis beams

A Change in Beam Injection Location to Off-axis Accounts for Only a Small Reduction in Confinement

- Discharges with equal β_N, $q_{\text{min}} \approx 1.1$
- Discharge with off-axis injection requires 13% more neutral beam power
 - τ_E reduced by 10% (including P_{ECCD})
 - $H_{89} (\approx 2.3) \propto \tau_E \sqrt{P}$ reduced by 5%
- Injection in region with higher χ_e, χ_i closer to the boundary
Increased Fast Ion Loss at High q_{min} May be a Result of Increased Fluctuation Power in the Alfvén Eigenmode Frequency Range

- Calculated fast ion stored energy fraction increases with $q_{\text{min}} \Rightarrow$ instability drive
- Fluctuation power in Alfvén Eigenmode frequency range generally increases with q_{min}

\[\frac{W_{\text{fast ion}}}{W}, \quad D_f = 0 \]

\[\frac{\bar{n}}{W} \quad \text{average power} \quad f > f_{\text{TAE}} \]

\[\frac{(\text{NBI power})}{\text{Max}(\text{NBI power})} \]

Off-Axis Neutral Beam Injection Is Enabling Improved Access to Fully Noninductive Plasma Regimes

Experimental results

✓ Broader current profile: improved access to q_{min} above 2
✓ Broader pressure profiles with β_N up to 3.3
increase of calculated ideal MHD stability limits: $\beta_N > 4$
✓ Thermal confinement as expected for H-mode;
total pressure limited by enhanced fast ion transport at high q_{min}

Models of next step parameter regimes for DIII-D

• Fully noninductive solutions at $\beta_N = 4-5$, $q_{\text{min}} > 2$: parameter regime relevant to ITER through DEMO
Off-Axis Neutral Beam Injection Is Enabling Improved Access to Fully Noninductive Plasma Regimes

Experimental results
- Broader current profile: improved access to q_{min} above 2
- Broader pressure profiles with β_N up to 3.3
 increase of calculated ideal MHD stability limits: $\beta_N > 4$
- Thermal confinement as expected for H-mode;
 total pressure limited by enhanced fast ion transport at high q_{min}

Models of next step parameter regimes for DIII-D
- **Fully noninductive solutions at $\beta_N = 4-5$, $q_{\text{min}} > 2$:**
 parameter regime relevant to ITER through DEMO
At a Steady-State Operating Point, the Heating and Current Drive Input Powers Balance Transport and Collisional Losses

- Heating power
- Current drive power

Optimally equal

Pressure (Stability limited)

Transport

Bootstrap current

Plasma Current $\propto B_T/q_{95}$

Collisions

- Goal: find externally selectable parameters so that f_{NI} is exactly 1
- β_N, q_{95}, B_T, n, external current drive profile
Extrapolation from DIII-D Steady-state Scenario Discharges Allows Scaling to $f_{NI} = 1$ without use of a Transport Model

- H_{98} confinement scaling \Rightarrow pressure
- Current sources from fits of the database to theory-based models
- Typical experimental profile shapes reflected in fitting coefficients
- Inputs f_p, H_{98}, Z_{eff} chosen to match the database

\[
 f_{BS} = \beta_{Nthermal} (Aq_{core}f_{pi}^B + Cq_{95}f_{po}^D)
\]

$q_{core} = \text{average } q(0.0 < \rho < 0.3)$
Extrapolation from DIII-D Steady-state Scenario Discharges Allows Scaling to $f_{NI} = 1$ without use of a Transport Model

- H_{98} confinement scaling \Rightarrow pressure
- Current sources from fits of the database to theory-based models
- Typical experimental profile shapes reflected in fitting coefficients
- Inputs f_p, H_{98}, Z_{eff} chosen to match the database

$$f_{BS} = \beta_{N\text{thermal}} (A q_{\text{core}} f_{pi}^B + C q_{95} f_{po}^D)$$

$q_{\text{core}} = \text{average } q(0.0 < \rho < 0.3)$

$$f_{NBCD} \propto P_B \frac{T_e}{n_e} \frac{q_{95}}{B_T} f(T_e, n_e, Z_{eff}, E_B, \text{geometry,} \ldots)$$

$$f_{ECCD} \propto P_{EC} \frac{T_e}{n_e} \frac{q_{95}}{B_T} f(\text{geometry})$$
Extrapolation from DIII-D Steady-state Scenario Discharges Allows Scaling to $f_{NI} = 1$ without use of a Transport Model

- H_{98} confinement scaling \Rightarrow pressure
- Current sources from fits of the database to theory-based models
- Typical experimental profile shapes reflected in fitting coefficients
- Inputs f_{p}, H_{98}, Z_{eff} chosen to match the database

$$f_{BS} = \beta_{N\text{th}} (A q_{\text{core}} f_{pi}^B + C q_{95} f_{po}^D)$$

$q_{\text{core}} = \text{average } q(0.0 < \rho < 0.3)$

$$f_{NBCD} \propto P_B \frac{T_e q_{95}}{n_e B_T} f(T_e, n_e, Z_{eff}, E_B, \text{geometry}, \ldots)$$

$$f_{ECCD} \propto P_{EC} \frac{T_e q_{95}}{n_e B_T} f(\text{geometry})$$

$$f_{NI} = f_{BS} + f_{NBCD} + f_{ECCD}$$
At the $f_{NI} = 1$ Operating Point, the Current Drive Input Power Exactly Matches the Losses Resulting from Transport

- β_N scanned to find $f_{NI} = 1$

\[n_e = 4.7 \times 10^{19} \text{ m}^{-3} \quad B_T = 1.75 \text{T} \quad H_{98} = 1.2 \quad q_{95} = 5.75 \]
At the $f_{NI} = 1$ Operating Point, the Current Drive Input Power Exactly Matches the Losses Resulting from Transport

- β_N scanned to find $f_{NI} = 1$
- Constraint: $P_{\text{heating}} = P_{\text{CD}}$

\[n_e = 4.7 \times 10^{19} \text{ m}^{-3} \quad B_T = 1.75 \text{T} \quad H_{98} = 1.2 \quad q_{95} = 5.75 \]
At the $f_{NI} = 1$ Operating Point, the Current Drive Input Power Exactly Matches the Losses Resulting from Transport

- β_N scanned to find $f_{NI} = 1$
- Constraint: $P_{heating} = P_{CD}$

- $f_{BS} \approx f_{CD} \approx 0.5$
- f_{BS} scales more slowly than β_N
- Increase in fast ion stored energy with P_B

$n_e = 4.7 \times 10^{19} \text{ m}^{-3}$ $B_T = 1.75 \text{T}$ $H_{98} = 1.2$ $q_{95} = 5.75$
Projected $f_{\text{Ni}} = 1$ Operating Points in DIII-D have $\beta_N > 4$

- q_{core} increases with off-axis injection

\[q_{\text{core}} \text{ (off-axis)} = 5 \text{ MW} \]

\[q_{\text{core}} \text{ (0 MW)} \]

\[\beta_N \]

\[n_e = 4.7 \times 10^{19} \text{ m}^{-3} \]

\[B_T = 1.75 \text{ T} \]

\[H_{98} = 1.2 \]
Projected $f_{NI} = 1$ Operating Points in DIII-D have $\beta_N > 4$

- q_{core} increases with off-axis injection

\[n_e = 4.7 \times 10^{19} \text{ m}^{-3} \]
\[B_T = 1.75 \text{ T} \]
\[H_{98} = 1.2 \]
Projected $f_{NI} = 1$ Operating Points in DIII-D have $\beta_n > 4$

- Compromise between reduced current drive power and increased fusion gain to choose q_{95}

$n_e = 4.7 \times 10^{19} \text{ m}^{-3}$

$B_T = 1.75 \text{ T}$

$H_{98} = 1.2$
An MHD Stable Solution at $\beta_N = 5$ is Projected with Optimum use of the Full Set of DIII-D Heating and Current Drive Tools

- **TGLF transport model $\Rightarrow T_e, T_i$ profiles**
 - Accounts for $P(0)/\langle P \rangle$ changes with heating power

- **Utilizes increased current drive flexibility from proposed upgrades**
 - 9 MW ECCD absorbed power
 - Second off-axis beamline
 - Beam energy 75-100 keV

- **Off-axis ECCD, off-axis beam injection provides current drive for large $\rho(q_{min})$**
 - Current profile broader than in present experiments
 - Retains broad pressure profile
An MHD Stable Solution at $\beta_N = 5$ is Projected with Optimum use of the Full Set of DIII-D Heating and Current Drive Tools

- **TGLF transport model $\Rightarrow T_e, T_i$ profiles**
 - Accounts for $P(0)/\langle P \rangle$ changes with heating power

- **Utilizes increased current drive flexibility from proposed upgrades**
 - 9 MW ECCD absorbed power
 - Second off-axis beamline
 - Beam energy 75-100 keV

- **Off-axis ECCD, off-axis beam injection provides current drive for large $\rho(q_{min})$**
 - Current profile broader than in present experiments
 - Retains broad pressure profile
Solutions in DIII-D at $\beta_N \geq 4$ are Accessible Using Off-axis Neutral Beam and Electron Cyclotron Current Drive

- Broader current and pressure profiles are obtained with off-axis neutral beam injection
 - Increases in predicted ideal-wall β_N limits

- Achieving high β_N with $q_{min} > 2$ will require optimizing for good τ_E
 - Requires understanding of fast ion transport at high q_{min} or compensation with higher thermal confinement

- Anticipated $\beta_N \approx 5$ operating point is well-placed to inform ITER, FNSF, and DEMO steady-state solutions