Modeling Edge Plasma Response to 3D Fields in DIII-D

by

N.M. Ferraro,

T.E. Evans, M.J. Lanctot, L.L. Lao, A.D. Turnbull,

R.A. Moyer,¹ R. Nazikian,² D.M. Orlov,¹ M.W. Shafer,³ E.A. Unterberg³

¹ University of California, San Diego
 ² Princeton Plasma Physics Laboratory
 ³ Oak Ridge National Laboratory

Presented at the 54th Annual APS Meeting Division of Plasma Physics Providence, Rhode Island

October 29 — November 2, 2012

Measurements of Edge Response to 3D Fields Are Generally in Good Agreement With Two-Fluid Modeling

- 3D fields have significant impact on tokamak performance
 - ELM suppression, pump-out, braking, etc.
- Edge displacements are a robust feature of 3D plasma response
 - Provide a measurement for validating codes
 - Provide an indication of internal plasma response

0.70

Z (m)

0.72

0.74

0.76

 We find generally good agreement between two-fluid modeling (M3D-C1) and measurements of edge response

0.64

0.66

0.68

Rotating *n*=1,2 Fields Sweeps Structures Past Diagnostics

- On DIII-D, the toroidal phase of n=1 and n=2 fields can be smoothly rotated
- Displacement is phase dependent

• Two possibilities

- Displacement is 3D
- Displacement is 2D, but phase dependent
 (i.e. there are significant error fields)

 Measured displacement is generally larger than calculated displacement of separatrix manifolds from vacuum fields

Large Displacements Also Observed Along Core Thomson Chord

 Measurements show significant (2–4 cm) displacements of edge n and T profiles when n=1 3D fields are applied

 Separatrix displacements due to vacuum fields are only ~few mm

4

Linear Plasma Response to 3D Fields is Modeled with M3D-C1

- <u>M3D-C1 ≠ M3D</u>
- Model includes
 - Two-fluid effects
 - Realistic resistivity
 - Scrape-off layer
 - Diverted geometry
- Mesh can be packed anisotropically
- Can solve linear or nonlinear response
 - Here we consider linear response

Two-Fluid Model Implemented in M3D-C1

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = 0 \qquad \mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \left[\frac{d_i}{n} (\mathbf{J} \times \mathbf{B} - \nabla p_e)\right] \\ n\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi \qquad \Pi = -\mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T\right] \\ \frac{\partial p}{\partial t} + \mathbf{u} \cdot \nabla p = -\Gamma p \nabla \cdot \mathbf{u} - \left[\frac{d_i}{n} \mathbf{J} \cdot \left(\Gamma p_e \frac{\nabla n}{n} - \nabla p_e\right)\right] \qquad \mathbf{q} = -\kappa \nabla p - \kappa_{\parallel} \mathbf{b} \mathbf{b} \cdot \nabla \left(\frac{p_e}{n}\right) \\ -(\Gamma - 1) \nabla \cdot \mathbf{q} \qquad \mathbf{J} = \nabla \times \mathbf{B} \\ \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \qquad p_e = p/2 \end{cases}$$

- Two-fluid terms
- Time-independent equations may be solved directly for linear response
- Boundary conditions: normal B from external coils is held constant at boundary

Displacement Can Be Quantified By The Change In The Location Of The Pedestal Top

- Pedestal top Z_{ped} is defined by tanh fit to data $T_e(Z) = \frac{T_0}{2} \left[1 - \tanh\left(\frac{Z - Z_0}{W}\right) \right]$
- Z_{ped} oscillates with phase of applied field (5 Hz)
- Little change in T_{ped}

Two-Fluid Modeling Reproduces Phase and Magnitude of Displacement

- In the experiment, the peak-to-peak displacement is ~4 cm
- Vacuum modeling finds few mm

Two-Fluid Modeling Reproduces Phase and Magnitude of Displacement

- In the experiment, the peak-to-peak displacement is ~4 cm
- Vacuum modeling finds few mm
- M3D-C1 Modeling finds good agreement in phase and magnitude of displacement

9

n=3 Fields Yield Smaller Displacements Than n<3

- *n*=3 fields cannot be rotated on DIII-D, but can be flipped
- Flipping n=3 fields yields displacement of ~1—2 cm

M3D-C1 finds agreement through much of pedestal

X-Ray Data Reveals Field-Aligned 3D Structure

 Data is obtained by flipping I-coil fields and taking difference between signals

- The poloidal structure is strongly indicative of a <u>field-aligned</u> <u>helical response</u>
- Modeling agrees qualitatively with poloidal structure of response
- Radial localization indicates driven peeling-ballooning response

Preliminary Results Show ~1 cm Midplane Displacements for ITER

- Midplane edge displacements are found to be ~1/2 cm in Q_{DT}=10 scenarios with 45 kAt in the center row
 - Only center row considered (found to have strongest coupling)
 - ITER Q_{DT} =10 scenarios have ~10 cm outer gap

Linear Results Appear to be Valid In These Cases

 "Displacement" may be defined by movement of isotherms

$$T_0(r+\xi) + \delta T(r+\xi) = T_0(r)$$

$$\begin{bmatrix} T_0(r) + \frac{dT_0}{dr}\xi \end{bmatrix} + \delta T(r) = T_0(r)$$

$$\xi = -\frac{\delta T}{dT_0/dr}$$

 Overlap of adjacent surfaces is possible, especially near moderational surfaces, edge, & x-point

Overlap criterion:

$$\left. \frac{d\xi}{dr} \right| > 1$$

Summary

- Plasma response calculations yield good agreement with experimental measurements of edge displacement
- Edge displacements are largely helical, not (just) axisymmetric
 - M3D-C1 response is purely helical, and agrees with experiment
 - X-ray data shows clear helical response
- Displacements may be strongly enhanced by plasma response (*i.e.* stable mode driven to finite amplitude)
- This tool will help us extrapolate to ITER with some confidence

