ELM-free, Quiescent H-mode Operation in DIII-D under Reactor-relevant Conditions using Non-axisymmetric Magnetic Fields from Coils Outside the Toroidal Field Coil

by

K.H. Burrell¹, A.M. Garofalo¹, W.M. Solomon², M.E. Fenstermacher³, D.M. Orlov⁴, T.H. Osborne¹, J.-K. Park², and P.B. Snyder¹

General Atomics
Princeton Plasma Physics Laboratory
Lawrence Livermore National Laboratory
University of California, San Diego

Presented at the 54th Annual APS Meeting Division of Plasma Physics Providence, Rhode Island

October 29 — November 2, 2012

Quiescent H-mode Sustained by Neoclassical Torque From 3D Fields is a Promising Operating Mode For Future Burning Plasmas

- Future machines require H-mode operation without ELMs in plasmas with low or no co-I_p NBI torque
- QH-mode operation without ELMs achieved using torque from DIII-D's external 3D coil set (outside toroidal coil) at reactor-relevant co-I_p torque levels

- Torque range used brackets ITER's

Quiescent H-mode Sustained by Neoclassical Torque From 3D Fields is a Promising Operating Mode For Future Burning Plasmas

- Future machines require H-mode operation without ELMs in plasmas with low or no co-I_p NBI torque
- QH-mode operation without ELMs achieved using torque from DIII-D's external 3D coil set (outside toroidal coil) at reactor-relevant co-I_p torque levels

- Torque range used brackets ITER's

 QH-mode with 3D fields maintains excellent energy confinement time even at low torque (H_{98y2} ≥1.3)

Quiescent H-mode Sustained by Neoclassical Torque From 3D Fields is a Promising Operating Mode For Future Burning Plasmas

- Future machines require H-mode operation without ELMs in plasmas with low or no co-I_p NBI torque
- QH-mode operation without ELMs achieved using torque from DIII-D's external 3D coil set (outside toroidal coil) at reactor-relevant co-I_p torque levels

- Torque range used brackets ITER's

- QH-mode with 3D fields maintains excellent energy confinement time even at low torque (H_{98y2} ≥1.3)
- Research has made significant contact with theory
 - Peeling-ballooning mode theory explains operating regime and need for edge rotational shear
 - Theory of neoclassical toroidal viscosity consistent with observed magnetic torque

Quiescent H-modes are the Ideal H-mode Plasmas

- QH-modes exhibit the H-mode confinement improvement and operate ELM-free with
 - Constant density and radiated power
 - Long duration (>4 s or 30 τ_{E}) limited only by hardware constraints
- Additional edge particle transport provided by edge harmonic oscillation (EHO)
 - Allows edge plasma to reach transport equilibrium with gradients below ELM stability limit
 - Time-averaged edge particle transport is faster than in ELMing H-mode

Quiescent H-modes are the Ideal H-mode Plasmas

- QH-modes exhibit the H-mode confinement improvement and operate ELM-free with
 - Constant density and radiated power
 - Long duration (>4 s or 30 τ_{E}) limited only by hardware constraints
- Additional edge particle transport provided by edge harmonic oscillation (EHO)
 - Allows edge plasma to reach transport equilibrium with gradients below ELM stability limit
 - Time-averaged edge particle transport is faster than in ELMing H-mode
- QH-mode seen with injected power from 3 MW over 15 MW
 - Maximum power limited by core beta limit
- QH-mode discovered first in counter-injected discharges in DIII-D
 - Subsequently seen in JT-60U, JET and ASDEX-U

QH-mode Operation in Future Devices Requires Technique to Maintain Shear in Edge Rotation at Small NBI Torque

- Previous experimental work demonstrated importance of edge rotational shear [K.H Burrell et al., Phys. Rev. Lett. (2009)]
- Observations consistent with theory of EHO as low-n kink-peeling mode destabilized by rotational shear [P.B. Snyder et at., Nucl. Fusion (2007)]
- Without 3D magnetic fields, as NBI torque goes from counter to co-I_p, magnitude of edge rotational shear decreases and ELMs return

QH-mode Operation in Future Devices Requires Technique to Maintain Shear in Edge Rotation at Small NBI Torque

- Previous experimental work demonstrated importance of edge rotational shear [K.H Burrell et al., Phys. Rev. Lett. (2009)]
- Observations consistent with theory of EHO as low-n kink-peeling mode destabilized by rotational shear [P.B. Snyder et at., Nucl. Fusion (2007)]
- Without 3D magnetic fields, as NBI torque goes from counter to co-I_p, magnitude of edge rotational shear decreases and ELMs return

QH-mode Operation in Future Devices Requires Technique to Maintain Shear in Edge Rotation at Small NBI Torque

- Previous experimental work demonstrated importance of edge rotational shear [K.H Burrell et al., Phys. Rev. Lett. (2009)]
- Observations consistent with theory of EHO as low-n kink-peeling mode destabilized by rotational shear [P.B. Snyder et at., Nucl. Fusion (2007)]
- Without 3D magnetic fields, as NBI torque goes from counter to co-I_p, magnitude of edge rotational shear decreases and ELMs return
- 3D magnetic fields can maintain edge rotational shear at low co-l_p NBI torque

Non-axisymmetric Coils on DIII-D Allow Creation of Magnetic Perturbations

- Two sets of non-axisymmetric coils can be used to correct intrinsic error fields and apply magnetic perturbations
- For experiments in 2012, coil outside vessel (C-coil) was used to create n=3 field
- I-coil was configured for intrinsic n=1 error field correction

QH-mode with Counter-I_p Rotation Maintained with co-I_p NBI Torque up to 1 Nm Using 3D Field from Coil Outside Toroidal Coil

- Raise NBI torque level from shot to shot to determine co-I_p limit
- Pedestal rotation remains counter-I_p until torque limit is reached
- Beyond limit, rotation jumps up and locked mode occurs
- n=3 3D field from C-coil only (7.1 kA)

QH-mode with Counter-I_p Rotation Maintained with co-I_p NBI Torque up to 1 Nm Using 3D Field from Coil Outside Toroidal Coil

- Raise NBI torque level from shot to shot to determine co-I_p limit
- Pedestal rotation remains counter-I_p until torque limit is reached
- Beyond limit, rotation jumps up and locked mode occurs
- n=3 3D field from C-coil only (7.1 kA)

QH-mode with Counter-I_p Rotation Maintained with co-I_p NBI Torque up to 1 Nm Using 3D Field from Coil Outside Toroidal Coil

- Raise NBI torque level from shot to shot to determine co-I_p limit
- Pedestal rotation remains counter-I_p until torque limit is reached
- Beyond limit, rotation jumps up and locked mode occurs
- n=3 3D field from C-coil only (7.1 kA)

Rotation Bifurcation as NBI Torque Increases is Qualitatively Consistent with Theory of NTV Torque

 Theory predicts rotation speed should jump when sum of other torques exceeds peak counter-I_p NTV torque

Magnetic Torque Determined from Global Torque Balance of QH-mode Discharges Agrees with IPEC + NTV Prediction

- $dL_{\phi}/dt = -L_{\phi}/\tau_{\phi} + T_{NBI} + T_{MT} + T_{intr}$
- In shots without magnetic torque (MT), plot of T_{NBI} dL_φ/dt versus L_φ gives straight line whose intercept is T_{intr}

Magnetic Torque Determined from Global Torque Balance of QH-mode Discharges Agrees with IPEC + NTV Prediction

- $dL_{\phi}/dt = -L_{\phi}/\tau_{\phi} + T_{NBI} + T_{MT} + T_{intr}$
- In shots without magnetic torque (MT), plot of T_{NBI} dL_φ/dt versus L_φ gives straight line whose intercept is T_{intr}
- In shots with MT, slope is different because T_{MT} depends on L_{ϕ}

K.H. Burrell/APS-DPP/Oct. 2012

Magnetic Torque Determined from Global Torque Balance of QH-mode Discharges Agrees with IPEC + NTV Prediction

- $dL_{\phi}/dt = -L_{\phi}/\tau_{\phi} + T_{NBI} + T_{MT} + T_{intr}$
- In shots without magnetic torque (MT), plot of T_{NBI} dL_φ/dt versus L_φ gives straight line whose intercept is T_{intr}
- In shots with MT, slope is different because T_{MT} depends on L_{ϕ}
- Comparing shots with and without MT gives T_{MT} = 3 Nm
- IPEC + NTV codes also give 3 Nm
 - IPEC (Park, PoP 2007) - NTV (Park, PRL 2009)

QH-mode Shows Surprising Improvement in Confinement at Low NBI Torque and Rotation

• Confinement quality of other H-mode plasmas in DIII-D is generally reduced with lower NBI torque and rotation rate

[Solomon et al., TTF (2012)]

- Standard type I ELMing
- RMP ELM suppressed
- Advanced inductive
- ITER baseline (q₉₅~3.1, shape, beta...)

QH-mode Sustained by Neoclassical Torque from 3D Fields is a Promising Operating Mode for Future Burning Plasmas

- Counter-rotating QH-mode edge sustained with ITER relevant co-Ip NBI torque, using 3D coil outside toroidal coil
- Stationary, constant density H-mode operation without ELMs at ITER pedestal beta and collisionality
- Excellent energy confinement quality at low rotation: H_{98y2}~1.3
- QH-mode NBI torque brackets ITER's

