Plasma Response and Transport Effects During RMP Experiments in DIII-D

by M.R. Wade for the DIII-D ELM Control Task Force

Presented at the 53rd Annual Meeting Of the APS Division of Plasma Physics Salt Lake City, Utah

November 14-18, 2011

Significant Progress Made in Extending RMP ELM Suppression Operating Window and Physics Understanding

- RMP ELM suppression extended to
 - Single-row n=3 ELM Suppression to $q_{95} = 3.15$
 - → Demonstrated ELM Suppression in ITER Baseline Scenario
 - n=2 ELM suppression
 - Near double null
 - Lower applied NBI torque
- Physics understanding of processes leading to ELM suppression is emerging
 - Edge plasma response consistent with RMP-induced island near pedestal top impeding further widening of pedestal such that peeling-ballooning instability not encountered

ELM Suppression Demonstrated in ITER Baseline Scenario ($q_{95} = 3.15$)

- ITER Shape, $\beta_N = 1.8$, $H_{89} = 1.8$
- Sustained for >1 s limited by
 - Transients due to internal m=1/n=1MHD
 - Duration of ECCD for tearing mode control
- Achieved with single row n=3
 I-coil RMP (upper row only)

Recent Research Focused on Determining Physics Responsible for q₉₅ Sensitivity

- Previous work showed narrow
 ELM Suppression window near
 q₉₅ = 3.5
 - Confirmed in fine-scale q₉₅ shot-to-shot scan
- Systematic reduction in ELM frequency as ELM Suppression window approached
- Also provided excellent documentation opportunity
 - High resolution edge data
 - Turbulence response

High Resolution Edge Measurements Reveal Strong Reduction in Pedestal <u>Width</u> in ELM Suppressed Cases

- Observed pedestal width consistent with EPED based model of ELM suppression
 - Critical width for suppression is <~3%, in agreement with EPED
- What is constraining pedestal width in ELM-suppressed cases?

 Without RMP, pedestal width continues to expand until peeling-ballooning stability limit encountered

Snyder CI2.00005

- In vacuum picture, RMP creates island chain over entire edge region
 - But, how does one reconcile sustainment of large gradient in pedestal region?

- Large pressure gradient region in edge also has large electron fluid rotation
 - $|\omega_{e,perp}| >> 0$
- Theory predicts significant field screening in this region

Ferraro JI2.00002

- Large pressure gradient region in edge also has large electron fluid rotation
 - $|\omega_{e,perp}| >> 0$
- Theory predicts significant field screening in this region
 - Small (non-existent?) islands
- Conversely, |ω_{e,perp} | ~ 0 just inside pedestal region
 - Island formation possible


```
Ferraro JI2.00002
```


Working Hypothesis:

- RMP induces island just inside top of pedestal
- 2) Island provides sufficient transport to prevent further expansion of pedestal width
 - → Peeling-ballooning stability limit not encountered

Degree of ELM Mitigation Correlated with Alignment of Pedestal Top and Outer Extent of m=10/n=3 Island

Island-Like Displacements Observed During n=3 RMP Toroidal Phase Shifts

- Toroidal phase of n=3 RMP switched by 60° every 200 ms
- Thomson scattering density contours separate only in 0° phase
 - Evidence for island formation??
- ELM suppression sustained except during RMP phase shift

Edge Temperature Phase Inversion Layer Correlated with Computed m=10/n=3 Island Location

- Displacement between 0° and 60° phasing of n=3 RMP
- Phase inversion occurs near calculated location of m=10/n=3 island
- Size of displacement is comparable to computed island size (Δψ_N ~ 0.02)

Edge Temperature Phase Inversion Layer Correlated with Computed m=10/n=3 Island Location

- Inversion layer moves progressively inward as q₉₅ increases
 - Consistent with movement of m=10/n=3 island location

Edge Temperature Phase Inversion Layer Correlated with Computed m=10/n=3 Island Location

Observed Displacement Is Kink-Like When Applying n=2 Rotating RMP

Reflectometer Density Profile

ELM suppression not obtained with n=2 rotating RMP

 Further evidence of importance of island-like displacement in n=3 cases

(BES using Fast Camera)

Window Between ELM Suppression and Locked Mode Onset Determined By Details of $\omega_{perp,e}$ Profile

- While low ω_{perp,e} ~ 0 just inside pedestal is desired for ELM suppression, ...
- ... ω_{perp,e}~ 0 in core increases susceptibility to locked modes due to applied 3D fields
 - May explain locked mode susceptibility in n=2 RMP cases
- RMP localized to pedestal region is highly desired
 - n=4 capability on ITER will reduce impact on core

Significant Progress Has Been Made In Improving the Physics Basis for RMP ELM Suppression in ITER

- Observations consistent with hypothesis that
 - RMP induces island near top of pedestal
 - Transport from island impedes further widening of the pedestal
 - Peeling-ballooning stability maintained

We Appreciate the Efforts of the ITER IO and Our International Collaborators in this Research

Collaborators from ITER IO, ASDEX-Upgrade, KSTAR, and LHD

- Also see S. Mordjick invited talk CI2.00002 and L. Zeng contributed talk GO4.00007
- More detail on this talk and other work can be found at the DIII-D Poster Session on Thursday afternoon

M.R. Wade/APS/November 2011

