The Relation Between Upstream Radial Widths of n_e and T_e and Outer Target Power Width for H-mode Discharges in DIII-D

by P.C. Stangeby¹, J.D. Elder¹, J.A. Boedo², M.A. Makowski³, C.J. Lasnier³, A.W. Leonard⁴

¹University of Toronto ²University of California, San Diego ³Lawrence Livermore National Laboratory ⁴General Atomics

Presented at the 53rd Annual Meeting of the APS Division of Plasma Physics Salt Lake City, Utah

November 14-18, 2011

UNIVERSITY OF TORONTO Institute for Aerospace Studies 113-11/PCS/rs With better knowledge of the physics controlling target heat width, there is a better chance of knowing how to scale measured widths in present tokamaks to ITER, FNSF, DEMO

Work Plan

- It appears that cross-field transport is the basic controlling process of SOL widths, manifesting itself most directly in upstream widths, with parallel transport and volumetric losses in the SOL/divertor then controlling the relation between upstream and target widths
- Here we focus on identifying the processes controlling the parallel transport of power in the scrape-off layer, SOL
- We examine the relation between upstream widths, $\lambda_{T_e}^{up}$, $\lambda_{n_e}^{up}$, measured by a reciprocating probe and Thomson scattering and target power widths $\lambda_{qtarget}^{measured}$ measured by ir thermography, for low and medium density H-mode discharges where the role of volumetric loss in the divertor is not expected to be strong

TEST HYPOTHESIS: Spitzer Electron Conduction Dominates at Medium Density, Flux-limited Elec. Heat Convection at Low

- It has long been assumed that parallel power transport in the SOL is largely due to classical, collisional Spitzer electron heat conduction $q_{II} = \kappa_{0e} T_e^{5/2} \partial T_e / \partial s_{II} \propto T_e^{7/2} / L_{II}$ and thus one expects to observe $\lambda_{q_{target}}^{measured} \approx \lambda_{q_{target}}^{spitzer} \equiv \lambda_{q_{II}}^{spitzer} = (2/7)\lambda_{T_e}^{up}$.
- Here we postulate that $\lambda_{q_{target}}^{spitzer}$ should occur at medium density, where the SOL is collisional but volumetric power loss in the SOL is not yet strong.
- For lower density, collisionless, SOL conditions we postulate that fluxlimited electron heat convection dominates $q_{||} \approx n_e kT_e \sqrt{kT_e / m_e} \propto n_e T_e^{3/2}$ and thus one expects to observe $\lambda_{q_{target}}^{measured} \approx \lambda_{q_{target}}^{flux-lim} \equiv \lambda_{q_{||}}^{flux-lim} = 1/[1.5/\lambda_{T_e}^{up} + 1/\lambda_{n_e}^{up}]$.

P.C. Stangeby/APS/November 2011

The Thomson System Provides Excellent Profiles Across the Separatrix

The Reciprocating Probe (RCP) and Thomson Data Agree Very Well Where they Overlap

The Definition of "Width" Used Here

- In this work all Thomson widths are the gradient lengths from 3rd order polynomial fits to the measured profiles over a span of ~10 mm centered on the separatrix, then mapped to the outside midplane
- Outer target power widths are exponential fits to the power profiles on the common flux side, then mapped to the outside midplane

T_e Radial Decay Lengths from Time-averaged Thomson Data Over the Steady Part of Each Shot

- The values of $\lambda_{T_e}^{up}$ contribute to both $\lambda_{q/l}^{spitzer} \equiv (2/7)\lambda_{T_e}^{up}$ and $\lambda_{q/l}^{flux-lim} \equiv 1/[1.5/\lambda_{T_e}^{up}+1/\lambda_{n_e}^{up}].$
- $\lambda_{T_e}^{up}$ at the separatrix doesn't vary much with I_p except at low density.
- In the SOL $\lambda_{T_e}^{up}$ varies rapidly with distance. Therefore uncertainty in the separatrix location is the most important source of error.

n_e Radial Decay Lengths from Time-averaged Thomson Data Over the Steady Part of Each Shot

- The values of $\lambda_{n_e}^{up}$ play no role in $\lambda_{q/l}^{Spitzer} \equiv (2/7)\lambda_{T_e}^{up}$ but effect $\lambda_{q/l}^{flux-lim} \equiv 1/[1.5/\lambda_{T_e}^{up}+1/\lambda_{n_e}^{up}].$
- $\lambda_{n_e}^{up}$ at the separatrix varies appreciably with I_p.
- In the SOL $\lambda_{n_e}^{up}$ varies rapidly with distance. The uncertainty in the separatrix location, however is less important than for $\lambda_{T_e}^{up}$ when $\lambda_{n_e}^{up}$ becomes >> $\lambda_{T_e}^{up}$.

The Spitzer and the Flux-limited Power Widths are Both Correlated with Plasma Current

P.C. Stangeby/APS/November 2011

Ratios of Measured Target Power Width to Spitzer and Flux-limited Power Widths are Consistent with TEST HYPOTHESIS, Although Scatter/ Error is Significant

- Error is mainly due to uncertainty in separatrix location
- Lines are best fits to a power-law relation
- Convergence of Spitzer and flux-limited is theoretically predicted to occur at $v_{SOL}^{e} = 10-20$ [Stangeby, Canik & Whyte, Nuclear Fusion 50 125003 (2010)]

ir power widths: C Lasnier. ELMs removed

The I_p-dependence of the Target Power Width is due to the I_p-dependence of the Upstream Density Width

Conclusions

- The hypothesis that Spitzer electron heat conduction controls parallel power transport in the SOL at medium density while flux-limited electron parallel heat convection is controlling at low density, is supported by measurements of upstream n_e and T_e widths and target power widths in a current scan of DIII-D H-mode discharges
- For the discharges analyzed here the I_p-dependence of the target power width is due to the I_p-dependence of the upstream density width
- Future work will focus on density scans (with I_p constant) and higher density where volumetric power loss in the divertor becomes strong and detachment is approached

Additional Slides

For High Collisionality, $nu_SOL_e > \sim 15$, Volumetric Power Loss in the Divertor Becomes Significant, $> \sim 50\%$. Such Shots are Excluded Here

Discussion

- The target power width $\lambda_{q_{target}}$ is what really matters.
- We want to know: Why $\lambda_{q_{target}}$ is of the size observed?

• The results here support the hypothesis: not analyzed here (a) cross-field transport sets $\lambda_{T_e}^{up}$, $\lambda_{n_e}^{up}$, $(\lambda_{T_i}^{up}, ...)$ the focus here (b) parallel transport sets $\lambda_{q||}^{up}$ [$\lambda_{T_e}^{up}$, $\lambda_{n_e}^{up}$, $(\lambda_{T_i}^{up}, ...)$]

here $\lambda_{q_{target}} = \lambda_{q_{\parallel}}^{up}$ + effect of volumetric losses in divertor

- The results here indicate that $\lambda^{up}_{q_{||}}[\lambda^{up}_{T_e}, \, ...]$ is given by electron

flux-limited convection for low density and by Spitzer electron conduction for medium density (and by implication for high density also, but not concluded yet).

