Advanced Inductive Plasmas With Low Torque Startup

by W.M. Solomon¹

In collaboration with

P.A. Politzer², R.J. Buttery², J.R. Ferron², A.M. Garofalo², J.M. Hanson³, Y. In⁴, G.L. Jackson², C.T. Holcomb⁵, R.J. La Haye², M.J. Lanctot⁵, T.C. Luce², M. Okabayashi¹, C.C. Petty², F. Turco³, A.S. Welander²

¹Princeton Plasma Physics Laboratory
²General Atomics
³Columbia University
⁴FAR-TECH Inc.
⁵Lawrence Livermore National Laboratory

Presented at the 53rd Annual Meeting of the APS Division of Plasma Physics Salt Lake City, Utah

November 14-18, 2011

Motivation

- Advanced inductive discharges offer an attractive alternative to the baseline scenario for ITER operation
 - Higher confinement coupled with high β_N allows operation at lower plasma current while still reaching Q=10 mission
- Goal is to develop plasmas with high fusion performance using rotation and relative momentum input comparable to that of ITER
 - Improved confinement and stability often achieved by exploiting high levels of rotation
 - Due to the rapidly increasing moment of inertia with machine size compared with confinement time, it becomes more difficult to drive significant rotation in ITER and beyond
 - Key issue is determining access and performance characteristics at low rotation

Advanced Inductive Discharge Approaching ITER Q=10 Equivalent Achieved with Low Torque Startup

- Torque ~1 Nm on DIII-D expected to drive similar rotation as ITER beams (~30 Nm)
- Does not utilize high torque in the startup
- β_N~3.1, H₉₈~1, q₉₅~4 sustained for maximum duration of counter NBI
- Normalized fusion performance, G=β_NH₈₉/ q₉₅² ~ 0.35
 – G~0.42 → ITER Q=10

At Reduced Torque, Plasma Becomes Increasingly Susceptible to 2/1 Neoclassical Tearing Modes

- Generally slow and lock, terminating high performance phase
- Does not appear a result of uncorrected error fields
 - 2/1 NTM occurred at the same torque level even with Improved error field correction

Use of Electron Cyclotron Heating Beneficial for Tearing Mode Control at Low Torque Regimes

- Application of ECH generally results in suppression of such modes
- Typically configured to drive current near q=2 surface
 - But actual current drive may not be essential here

Intrinsic Drive in Low Torque AI Plasmas Closely Matches Previously Determined Scaling

- An excellent predictor of edge intrinsic torque has been established for DIII-D H-modes
 - Empirically includes physics associated with turbulent Reynolds stress and thermal ion orbit loss [Solomon et al., Nucl. Fusion (2011)]
 1.5
- New advanced inductive discharges show notable levels of intrinsic torque
 - Significantly exceed range of data set used to construct scaling
- If holds for ITER scenario 2, compute intrinsic torque of only 2 Nm

Much smaller than even NBI torque

Advanced Inductive Discharges Have Been Run With Zero Net Input Torque For Full Discharge

• Using only modest EC power (~1 MW), 2/1 NTM is reduced in amplitude sufficiently to allow operation at β_N ~2.5

#144903

- Maximum achievable with available heating power in these conditions

Advanced Inductive Discharges Have Been Run with Zero Net Input Torque For Full Discharge

- Using only modest EC power (~1 MW), 2/1 NTM is reduced in amplitude sufficiently to allow operation at β_N ~2.5
 - Maximum achievable with available heating power in these conditions
- Additional EC power allows complete stabilization of 2/1 mode
 - Energy confinement time the same
 - Similar β_N for similar combined NBI+ECH
- Significant cost to confinement for using ECCD aimed at q=2
 - Avoids disruptive locked mode
 - But gain is not notably improved

Advanced Inductive Plasmas with High $\beta_N \sim 3$ Achieved Using More Central ECH (no q=2 ECCD)

- Torque ~1 Nm, H_{98} ~1
- In this case, $\rho_{FCH} \sim 0.3$ (cf $\rho_{a=2}$ ~ 0.6) and configured for heating without current drive

Insensitivity to deposition location or heating vs current drive suggests different mechanism than standard NTM stabilization

Significant Reduction in Confinement Observed as Torque Is Reduced

- For fixed β_N , power demand increase ~70% at low torque
- H₉₈ reduced from >1.5 to approx 1.0

WM Solomon/APS/November 2011

Higher Confinement Conditions Are Not Simply Recoverable by Ramping Up Torque

- Relatively difficult to spin the plasma up from low rotation state
 - Torque increased a factor of 4, rotation barely increased a factor of 2

WM Solomon/APS/November 2011

Summary

- Advanced inductive discharges with normalized fusion performance G~0.35 approaching ITER Q=10 equivalent have been demonstrated with torque ~1 Nm and q₉₅~4
- Mechanism by which ECH assists low torque operation not yet clear
 - Apparently different than replacement of helical deficit in bootstrap current associated with island
 - ECH leading to direct modification of classical Δ' stability parameter?
- High β_N AI discharges exhibit significant levels of intrinsic torque
 - As expected from previously determined scaling of DIII-D intrinsic drive
- Significant reduction in confinement observed at reduced rotation
 - Want to find ways to recover performance to further enhance attractiveness of scenario for low rotation operation

WM Solomon/APS/Nov2011