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Summary of Heat Flux Width Scaling 

•   Multi-machine data base  
predicts a scaling 

•   Two-parameter fit yields 
independent scaling for private 
and common flux regions 
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•   Upstream plasma profiles correlated with divertor heat flux width 

•   Heat flux width scaling consistent with drift based model 
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Heat Flux Width is a Critical Design Parameter 
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•   The heat flux width is a critical design 
parameter for current and next-step 
tokamaks 

•   Scaling of the heat flux width with 
engineering and physics parameters 
needs a firmer physical basis than is 
presently available 
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Heat Flux Width is a Critical Design Parameter 

•   The heat flux width is a critical design 
parameter for current and next-step 
tokamaks 

•   Scaling of the heat flux width with 
engineering and physics parameters 
needs a firmer physical basis than is 
presently available 

•   Volumetric heat source exhausts to 
an area,                     where       is 
only tens of millimeters in width 

 
•   Resulting heat fluxes can easily 

exceed material limit of ~10 MW/m2 
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Heat Flux Width is Dependent on Both Parallel and 
Cross-field Transport 

•   SOL thermal transport can be cast as  
competition between parallel and  
cross-field  transport 
–   Parallel physics governed by 
–   conductive/convective transport  

and boundary conditions 
-  Cross-field physics governed by  

drift/collisional/turbulent transport 
–  Scale lengths are vastly different:           ~ 106 

•   Don’t consider contribution from ELMs to heat flux 
-  Only contributes ~ 20% of the heat 
-  Likely scales differently 
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Present Study is Unique in its Scope 

•   Present study differs from previous ones 
–   Coordinated effort on three different devices: CMOD, D3D,  

and NSTX 
–   Similar magnetic topology 
–   Similar plasma conditions 
–   Improved IR thermography providing between-ELM  

(steady-state) heat flux measurements, as in previous DIII-D work 

•   Yields a cohesive data set that  
–   Allows study of underlying physics 
–   Establishes a firm physics basis for extrapolation to  

next-step devices 

11 
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Engineering and Physics Parameters Were Varied 
Over a Wide Range 

•   Basic magnetic configuration was the same 
-  Lower single null with grad-B drift towards the x-point 
-  ELMy H-mode (EDA in the case of CMOD) 
- Attached divertor 

•   Some differences exist 
–  Divertor physical geometries 
–   Target is Mo in CMOD and Carbon in DIII-D and NSTX 
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Significant Variation in Size was Obtained 
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IR Thermography is the Primary Means of Measuring 
the Heat Flux 
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Steady-state Heat Flux Profiles are Measured 
Between ELMs 
•   Fast infrared camera measures the surface temperature  

between ELMs 
–   Supplemented by probe and slower thermocouple measurements 

•   No profile broadening due to strike point motion 
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Codes Are Used to Convert Surface Temperature to 
Heat Flux 

•   Temperature is converted to heat flux by solution of the 
2D, time-dependent, non-linear heat diffusion equation 
–   Anisotropic in the case of carbon (THEODOR code) 

C-Mod

17 

-  Finite element code used 
for curved divertor in 
CMOD (QFLUX_2D) 
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Parallel Heat Flux is Used to Compare Different Devices 

•   To reconcile differing divertor geometries, the parallel heat flux, 
mapped to the outer midplane, is used for inter-machine 
comparisons 

•   Typically, φ is a few degrees 

19 

φ = Field Line Pitch Angle
Divertor Target Plate

Toroidal Direction

Magnetic Field Line
qnormal q|| = qnormal/sin φ
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The Traditional Way to Characterize the Heat Flux 
Profile is with the Integral Width 

•   Integral width is a single parameter measure of a profile 

! 
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•   The integral width captures the 
contribution to the heat flux from 
the “tail” such as in CMOD 
profiles 

 
•   Integral width includes 

contributions from both the 
private and common flux 
regions 
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The Eich Function is a Two-parameter, Semi-empirical 
Fit to the Entire Profile 

•   The function is a convolution of a 
Gaussian and an Exponential 
- Gaussian: Characterized by wpvt 

and models diffusion into the 
private flux and SOL regions 

-  Exponential: Characterized by lsol 
and models transport in the SOL 
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•   Eich* has developed a two-parameter, semi-empirical profile  
fit-function: 
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•   The function is a convolution of a 
Gaussian and an Exponential 

•   Integral width of Eich profile is 

•   Eich* has developed a two-parameter, semi-empirical profile  
fit-function: 
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Primary Dependence Found is Approximately  
Inverse with Ip 

•   All three machines independently demonstrate an inverse Ip 
dependence with slightly different exponents 

•   This dependence persists in  
the multi-machine scaling 

•   Secondary dependencies  
(Bt, Psol, …) vary from machine  
to machine and  
–   With choice of heat flux width 
–   Weighting of data 
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Similar Dependencies Obtained with Different 
Measures of Width 

•   Predominant scaling is ~ a0.4/Ip 
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The Eich Parameters wpvt and λsol have Different 
Parametric Dependencies 

•   Private flux (wpvt) 
-  Strong dependence on Ip, fG  
- Weak dependence on Bt, Psol 
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-  Strong dependence on Ip, a 
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Scaling with a/Ip Suggest Bpol as Fundamental 
Dependence 

•   Scaling of λsol with a/Ip 
suggests Bpol as a 
regression variable 

•   Resulting scaling is 
independent of all other 
variables, including 
minor radius, a 

•   Has same value of 
correlation coefficient 
as 4 parameter 
regression 
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Data from this Study is Consistent with  
JET/ASDEX-U Results* 

28 
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"JET # int = C $ Bt
eb qcyl

eq Psol
e p Rer

C = 3.19 ±1.49
eb = #0.47 ± 0.21
eq = 0.82 ± 0.25
ep = #0.05 ± 0.09
er = #0.39 ± 0.18

*Eich, NO.00014 

•   Result of JET/ASDEX-U 
study are similar to those 
of this study 
–  Weak size scaling 
–  No dependence on Psol 
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High Quality Upstream Plasma Profile Data has been 
Obtained 

30 
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•   High quality Thomson data has been 
obtained for upstream plasma profiles on 
D3D this year 
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High Quality Upstream Plasma Profile Data has been 
Obtained 

•   High quality Thomson data has been 
obtained for upstream plasma profiles on 
D3D this year 

•   Relevant region for SOL models is quite 
small: ~10 mm 



113-11/MAK/rs M.A. Makowski/APS/November 2011 32 

0.2

0.1

0
0.4
0.3
0.2
0.1

0

1.0

0.5

0
Rmidplane (m)

n e (
10

20
 m

-3 )
T e (

ke
V)

P e (
kP

a)
2.260 2.265 2.270

10

5

0

5

0

5

0

L ne
 (m

m
)

L Te
 (m

m
)

L Pe
 (m

m
)

•   High quality Thomson data has been 
obtained for upstream plasma profiles on 
D3D this year 

•   Relevant region for SOL models is quite 
small: ~10 mm 

•   Can extract accurate gradient scale 
lengths: Lne, LTe, Lpe 

•   Possible to evaluate the validity of simple 
models for parallel heat flux 
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Profile Scale Lengths Generally Consistent with  
Parallel Physics Models of Heat Flux Width* 
•   Parallel physics models generally predict that the heat flux width is 

proportional to the gradient scale lengths of the profiles of ne, Te, or 
Pe (or a combination of them) 

•   Models relate scale lengths to 
the heat flux width, but do not 
predict what determines the 
width 

•   Flux-limited model agrees better 
than Spitzer model 
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What Sets the Heat Flux Width?? 

35 

•   Competition between parallel and cross-field physics 
determines the heat flux width 

•   Scaling of the heat flux width indicates the dependencies,  
but not the underlying physics mechanisms 
–   Result is that the heat flux width depends strongly on Bp 

•   Parallel physics yields a simple relation between the divertor 
heat flux width and SOL profiles 

•   Examine two possible models for SOL transport expected to 
scale with Bp 
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Drift Based Model of SOL Flows Quantitatively  
Predicts the Heat Flux Width 

•   This is a first principals model with no free 
parameters but is based on a heuristic 
derivation* 

•   Magnetic drifts carry particles into the SOL 

•   Parallel flows assumed in the SOL 

•   The penetration of the drift into the SOL 
determines the density scale length 

•   Anomalous electron thermal diffusivity is 
needed to provide heat exhaust 

•   Factors of order unity may apply 
 

36 

*Goldston, accepted for publication, Nuc. Fusion 
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Strongly Shaped Diverted Plasma (!= 1.8) 
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Our Results are Consistent with Drift Based Theory  
of Heat Flux Width 

•   Observed size scaling is 
consistent with drift based theory 
of heat flux width 

•   Predicts that the heat flux width is 
proportional to the poloidal 
gyroradius ~ B-1
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The Kinetic Ballooning Mode (KBM) is a Leading 
Candidate for Setting the Edge Pressure Gradient* 
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•   Estimate the KBM critical gradient  
at the separatrix by the ideal  
ballooning mode stability limit 

•   Measured and calculated  
pressure gradients scale similarly 
–   Factor of 1.5 is within the  

uncertainty of measurements  
and calculation 

•   For a complete model of the  
heat flux width, need 
-  A more accurate calculation  

of the KBM limit 
-  A model for the separatrix pressure 
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Outline 

•   Motivation 

•   Experimental Conditions and Diagnostics  

•   Heat Flux Profiles 

•   Multi-Machine Scaling Relations 

•   Plasma Profile Analysis 

•   Comparison with SOL Models 

•   Conclusion and Summary 
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Implications for Next Step Devices 

•   Inverse Ip dependence dominates scaling of heat flux width 
–   This has important  implications for high plasma current next 

step devices 

•   Regardless of secondary dependencies, heat flux widths are 
consistently smaller than currently used scaling relations 
–   Results here predict a width of the order of 1 mm for ITER 
–   This is substantially less than the present estimate of 5 mm 

40 
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Summary 

41 

•   Multi-machine data base predicts a 
scaling 

•   Two-parameter fit yields 
independent scaling for private 
and common flux regions 

•   Upstream plasma profiles correlated with divertor heat flux width 

•   Heat flux width scaling consistent with drift based model 
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