Analysis of a Multi-Machine Database on Divertor Heat Flux

by

M.A. Makowski¹,

with D. Elder², T.K. Gray⁴, B.LaBombard⁶, C.J. Lasnier¹, A.W. Leonard³, R. Maingi⁴, P.C. Stangeby², J.L. Terry⁶, and J.G. Watkins⁵ ¹Lawrence Livermore National Laboratory ²University of Toronto ³General Atomics ⁴Oakridge National Laboratory ⁵Sandia National Laboratory ⁶Massachusetts Institute of Technology Presented at the

53rd Annual Meeting of the APS Division of Plasma Physics, Salt Lake City, Utah

November 14-18, 2011

Outline

- Motivation
- Experimental Conditions and Diagnostics
- Heat Flux Profiles
- Multi-Machine Scaling Relations
- Plasma Profile Analysis
- Comparison with SOL Models
- Conclusion and Summary

Summary of Heat Flux Width Scaling

 Multi-machine data base predicts a scaling

$$\lambda_q \sim \frac{a}{I_p} \sim \frac{1}{B_p}$$

 Two-parameter fit yields independent scaling for private and common flux regions

- Upstream plasma profiles correlated with divertor heat flux width
- Heat flux width scaling consistent with drift based model

Outline

Motivation

- Experimental Conditions and Diagnostics
- Heat Flux Profiles
- Multi-Machine Scaling Relations
- Plasma Profile Analysis
- Comparison with SOL Models
- Conclusion and Summary

- The heat flux width is a critical design parameter for current and next-step tokamaks
- Scaling of the heat flux width with engineering and physics parameters needs a firmer physical basis than is presently available

- The heat flux width is a critical design parameter for current and next-step tokamaks
- Scaling of the heat flux width with engineering and physics parameters needs a firmer physical basis than is presently available
- Volumetric heat source exhausts to an area, $A = 2\pi R \lambda_{q\perp}$ where $\lambda_{q\perp}$ is only tens of millimeters in width

- The heat flux width is a critical design parameter for current and next-step tokamaks
- Scaling of the heat flux width with engineering and physics parameters needs a firmer physical basis than is presently available
- Volumetric heat source exhausts to an area, $A = 2\pi R \lambda_{q\perp}$ where $\lambda_{q\perp}$ is only tens of millimeters in width

- The heat flux width is a critical design parameter for current and next-step tokamaks
- Scaling of the heat flux width with engineering and physics parameters needs a firmer physical basis than is presently available
- Volumetric heat source exhausts to an area, $A = 2\pi R \lambda_{q\perp}$ where $\lambda_{q\perp}$ is only tens of millimeters in width

- The heat flux width is a critical design parameter for current and next-step tokamaks
- Scaling of the heat flux width with engineering and physics parameters needs a firmer physical basis than is presently available
- Volumetric heat source exhausts to an area, $A = 2\pi R \lambda_{q\perp}$ where $\lambda_{q\perp}$ is only tens of millimeters in width
- Resulting heat fluxes can easily exceed material limit of ~10 MW/m²

Heat Flux Width is Dependent on Both Parallel and Cross-field Transport

- SOL thermal transport can be cast as competition between parallel and cross-field transport
 - Parallel physics governed by
 - conductive/convective transport and boundary conditions
 - Cross-field physics governed by drift/collisional/turbulent transport
 - Scale lengths are vastly different: $\chi_{\parallel}/\chi_{\perp} \sim 10^6$

• Don't consider contribution from ELMs to heat flux

- Only contributes ~ 20% of the heat
- Likely scales differently

Present Study is Unique in its Scope

• Present study differs from previous ones

- Coordinated effort on three different devices: CMOD, D3D, and NSTX
- Similar magnetic topology
- Similar plasma conditions
- Improved IR thermography providing between-ELM (steady-state) heat flux measurements, as in previous DIII-D work

Yields a cohesive data set that

- Allows study of underlying physics
- Establishes a firm physics basis for extrapolation to next-step devices

Outline

Motivation

- Experimental Conditions and Diagnostics
- Heat Flux Profiles
- Multi-Machine Scaling Relations
- Plasma Profile Analysis
- Comparison with SOL Models
- Conclusion and Summary

Engineering and Physics Parameters Were Varied Over a Wide Range

• Basic magnetic configuration was the same

- Lower single null with grad-B drift towards the x-point
- ELMy H-mode (EDA in the case of CMOD)
- Attached divertor

Some differences exist

- Divertor physical geometries
- Target is Mo in CMOD and Carbon in DIII-D and NSTX

	I _p (MA)	B _t (T)	f_{GW}	a (m)	R (m)	P _{sol} (MW)
Range	3.0 x	14.7 x	3.0 x	2.7 x	2.5 x	9.8 x
CMOD	0.5 – 1.0	4.6 - 6.2	0.3 – 0.7	0.22	0.69	0.6 - 3.0
DIII-D	0.5 – 1.5	1.2 – 2.1	0.4 - 0.6	0.60	1.75	1.2 – 4.5
NSTX	0.6 - 1.2	0.42 -0.49	0.3 – 0.9	0.60	0.86	2.4 – 5.9

Significant Variation in Size was Obtained

IR Thermography is the Primary Means of Measuring the Heat Flux

Steady-state Heat Flux Profiles are Measured Between ELMs

 Fast infrared camera measures the surface temperature between ELMs

-Supplemented by probe and slower thermocouple measurements

No profile broadening due to strike point motion

Codes Are Used to Convert Surface Temperature to Heat Flux

- Temperature is converted to heat flux by solution of the 2D, time-dependent, non-linear heat diffusion equation
 - Anisotropic in the case of carbon (THEODOR code)
 - Finite element code used for curved divertor in CMOD (QFLUX_2D)

Outline

- Motivation
- Experimental Conditions and Diagnostics
- Heat Flux Profiles
- Multi-Machine Scaling Relations
- Plasma Profile Analysis
- Comparison with SOL Models
- Conclusion and Summary

Parallel Heat Flux is Used to Compare Different Devices

- To reconcile differing divertor geometries, the parallel heat flux, mapped to the outer midplane, is used for inter-machine comparisons
- Typically, φ is a few degrees

The Traditional Way to Characterize the Heat Flux Profile is with the Integral Width

• Integral width is a single parameter measure of a profile

$$\lambda_{q,\text{int}} = \frac{1}{q_{\parallel,0}} \int q_{\parallel}(R_{mp}) dR_{mp}$$
The integral width captures the contribution to the heat flux from the "tail" such as in CMOD profiles
Integral width includes contributions from both the private and common flux regions
$$\sum_{n=1}^{\infty} \frac{1}{q_{\parallel,0}} \int q_{\parallel}(R_{mp}) dR_{mp}$$

 $\rho - \rho_{\text{sep}} (\text{mm})$

The Eich Function is a Two-parameter, Semi-empirical Fit to the Entire Profile

• Eich* has developed a *two-parameter*, semi-empirical profile fit-function:

$$q_{\parallel}(s) = \frac{q_{\parallel,0}}{N\sqrt{\pi w_{pvt}^2}} \int_0^\infty e^{-(s-s')^2/w_{pvt}^2} e^{-s'/\lambda_{sol}} ds' + q_{bkg}$$

- The function is a convolution of a Gaussian and an Exponential
 - Gaussian: Characterized by w_{pvt} and models diffusion into the private flux and SOL regions
 - Exponential: Characterized by I_{sol} and models transport in the SOL

*T. Eich, accepted for publication, PRL.

The Eich Function is a Two-parameter, Semi-empirical Fit to the Entire Profile

• Eich* has developed a *two-parameter*, semi-empirical profile fit-function:

$$q_{\parallel}(s) = \frac{q_{\parallel,0}}{N\sqrt{\pi w_{pvt}^2}} \int_0^\infty e^{-(s-s')^2/w_{pvt}^2} e^{-s'/\lambda_{sol}} ds' + q_{bkg}$$

- The function is a convolution of a Gaussian and an Exponential
- Integral width of Eich profile is

$$\lambda_{eich-int} = \frac{1}{q_{\parallel 0}} \int_{-\infty}^{\infty} [q_{\parallel}(s) - q_{bkg}] ds$$
$$\approx \lambda_{sol} + 1.64 w_{pvt}$$

*T. Eich, accepted for publication, PRL.

Outline

- Motivation
- Experimental Conditions and Diagnostics
- Heat Flux Profiles
- Multi-Machine Scaling Relations
- Plasma Profile Analysis
- Comparison with SOL Models
- Conclusion and Summary

Primary Dependence Found is Approximately Inverse with I_p

- All three machines independently demonstrate an inverse I_p dependence with slightly different exponents
- This dependence persists in the multi-machine scaling
- Secondary dependencies

 (B_t, P_{sol}, ...) vary from machine to machine and
 - With choice of heat flux width
 - Weighting of data

Similar Dependencies Obtained with Different Measures of Width

• Predominant scaling is $\sim a^{0.4}/I_p$

$$\lambda_{fit} = C \cdot I_p^{e_I} \cdot B_t^{e_B} \cdot a^{e_a} \cdot f_G^{e_f}, \qquad f_G = n_e / (I_p / \pi a^2)$$

M.A. Makowski/APS/November 2011

The Eich Parameters w_{pvt} and λ_{sol} have Different Parametric Dependencies

- Private flux (w_{pvt})
 - Strong dependence on I_p , f_G

- Weak dependence on B_t , P_{sol}

- SOL (I_{sol})
 - Strong dependence on I_p , a
 - Weak B_t and no f_G dependence

Scaling with a/I_p Suggest B_{pol} as Fundamental Dependence

- Scaling of λ_{sol} with a/I_p suggests B_{pol} as a regression variable
- Resulting scaling is independent of all other variables, including minor radius, a
- Has same value of correlation coefficient as 4 parameter regression

Data from this Study is Consistent with JET/ASDEX-U Results*

Outline

- Motivation
- Experimental Conditions and Diagnostics
- Heat Flux Profiles
- Multi-Machine Scaling Relations
- Plasma Profile Analysis
- Comparison with SOL Models
- Conclusion and Summary

High Quality Upstream Plasma Profile Data has been Obtained

 High quality Thomson data has been obtained for upstream plasma profiles on D3D this year

High Quality Upstream Plasma Profile Data has been Obtained

- High quality Thomson data has been obtained for upstream plasma profiles on D3D this year
- Relevant region for SOL models is quite small: ~10 mm

High Quality Upstream Plasma Profile Data has been Obtained

- High quality Thomson data has been obtained for upstream plasma profiles on D3D this year
- Relevant region for SOL models is quite small: ~10 mm
- Can extract accurate gradient scale lengths: L_{ne}, L_{Te}, L_{pe}

$$L_{ne} = \left(\frac{1}{n_e} \frac{dn_e}{dR}\right)^{-1}$$

 Possible to evaluate the validity of simple models for parallel heat flux

Profile Scale Lengths Generally Consistent with Parallel Physics Models of Heat Flux Width*

- Parallel physics models generally predict that the heat flux width is proportional to the gradient scale lengths of the profiles of n_e , T_e , or P_e (or a combination of them)
- Models relate scale lengths to the heat flux width, but do not predict what determines the width
- Flux-limited model agrees better than Spitzer model

$$\lambda_{\text{spitzer}} = \frac{2}{7} L_{Te}, \quad \lambda_{\text{flux-limited}} = \left(\frac{1}{L_{ne}} + \frac{1.5}{L_{Te}}\right)^{-1}$$

P.C. Stangeby, GO4.00009

Outline

- Motivation
- Experimental Conditions and Diagnostics
- Heat Flux Profiles
- Multi-Machine Scaling Relations
- Plasma Profile Analysis
- Comparison with SOL Models
- Conclusion and Summary

What Sets the Heat Flux Width??

- Competition between parallel and cross-field physics determines the heat flux width
- Scaling of the heat flux width indicates the dependencies, but not the underlying physics mechanisms

- Result is that the heat flux width depends strongly on B_{ρ}

- Parallel physics yields a simple relation between the divertor heat flux width and SOL profiles
- Examine two possible models for SOL transport expected to scale with B_p

Drift Based Model of SOL Flows Quantitatively Predicts the Heat Flux Width

- This is a first principals model with no free parameters but is based on a heuristic derivation*
- Magnetic drifts carry particles into the SOL
- Parallel flows assumed in the SOL
- The penetration of the drift into the SOL determines the *density* scale length
- Anomalous electron thermal diffusivity is needed to provide heat exhaust
- Factors of order unity may apply

*Goldston, accepted for publication, Nuc. Fusion

Our Results are Consistent with Drift Based Theory of Heat Flux Width

$$\lambda_{qll,Goldston} = 5671 \cdot P_{sol}^{1/8} \frac{(1+\kappa^2)^{5/8} a^{1778} B^{1/4}}{I_p^{9/8} R} \left(\frac{2\overline{A}}{1+\overline{Z}}\right)^{7/16} \left(\frac{Z_{eff}+4}{5}\right)^{1/8}$$
• Observed size scaling is consistent with drift based theory of heat flux width
• Predicts that the heat flux width is proportional to the poloidal gyroradius ~ B^{-1}{}_{p,mp}
$$\frac{a^{17/8}}{I_p^{9/8} R} \approx \frac{a^2}{I_p R} = \frac{a}{R} \frac{1}{B_p}$$

NATIONAL FUSION FACILITY

The Kinetic Ballooning Mode (KBM) is a Leading Candidate for Setting the Edge Pressure Gradient*

- Estimate the KBM critical gradient at the separatrix by the ideal ballooning mode stability limit
- Measured and calculated pressure gradients scale similarly
 - Factor of 1.5 is within the uncertainty of measurements and calculation
- For a complete model of the heat flux width, need
 - A more accurate calculation of the KBM limit
 - A model for the separatrix pressure

Snyder, Cl2.00005

Outline

- Motivation
- Experimental Conditions and Diagnostics
- Heat Flux Profiles
- Multi-Machine Scaling Relations
- Plasma Profile Analysis
- Comparison with SOL Models
- Conclusion and Summary

Implications for Next Step Devices

- Inverse I_p dependence dominates scaling of heat flux width
 - This has important implications for high plasma current next step devices
- Regardless of secondary dependencies, heat flux widths are consistently smaller than currently used scaling relations
 - Results here predict a width of the order of 1 mm for ITER
 - This is substantially less than the present estimate of 5 mm

Summary

 Multi-machine data base predicts a scaling

$$\lambda_q \sim \frac{a}{I_p} \sim \frac{1}{B_p}$$

 Two-parameter fit yields independent scaling for private and common flux regions

- Upstream plasma profiles correlated with divertor heat flux width
- Heat flux width scaling consistent with drift based model

