Transport Stiffness of TGLF and It's Impact on ITER

by J.E. Kinsey

in collaboration with G.M. Staebler, R.E. Waltz, J. Candy *General Atomics*

Presented at the 53rd Annual Meeting of the APS Division of Plasma Physics Salt Lake City, Utah

November 14-18, 2011

Motivation — A Key Ingredient in the TGLF Predictions for ITER is Core Temperature Profile Stiffness

- Stiffness feature #1: Profiles are insensitive to changes in P.
 - IAEA10 results showed that the predicted fusion $Q=P_{fus}/P_{aux}$ sensitive to auxiliary heating, scales like $P_{aux}^{-0.8}$ at fixed β_{ped}
 - Challenging to increase P_{fus} by adding P_{aux} but can increase fusion Q by reducing P_{aux} (if β_{ped} remains fixed)
- Stiffness feature #2: Profiles are sensitive to the pedestal height

TGLF Predicts that ITER has a Composite Core Stiffness that is Comparable to DIII-D & JET for Conventional H-modes

- Stiffness of TGLF is assessed defining the stiffness as S=dln(P_{tr})/dln(z) where z=a/L_T and P_{tr} =-nV' χ dT/dr is the transport power
 - Composite stiffness is computed where a/L_{Ti} and a/L_{Te} are increased by 10% at transport solution point and TGLF is called all other quantities fixed
 - About a dozen DIII-D and JET H-modes were compared to ITER
 - Stiffness values are typically in the range of 5-10

Global DIII-D H-mode Data Shows Evidence of Stiffness

- Osborne's DIII-D pedestal H-mode database (IAEA10, EXC/2-1)
- The colors represent different triangularity ranges
 - Blue=low, red=med, purple=high
- At moderate to high power
 (P > 4 MW) the core appears stiff
 - There is a "soft" regime at low power (P < 4 MW)
 - Presumably the transition from the soft regime to the stiff regime occurs when the power is sufficient to drive the profiles up against stiff critical gradient limits
- This data movitated a dedicated experiment to test core stiffness at fixed β_{ped}

🔆 GENERAL ATOMIC

Recently, Power Scans were Performed in DIII-D to Specifically Test Core Transport Stiffness in Sawtooth-free H-mode Discharges

- Goal was to vary P_{NB} at fixed β_{ped}
- NBI power varied by a factor of 3.4 at fixed rotation, density, and safety factor in LSN H-mode discharges
 - B_T=2.1 T
 - I_p=1.2 MA
 - $q_0 = 1.1 1.2, q_{95} = 4$
 - n_e=4 x 10¹⁹/m³
 - P_{NB} = 2.8-9.5 MW
- Weak triangularity was utilized in order to keep H-mode pedestal pressure fixed as the NBI power was varied
 - **-** κ=1.7

- $\delta_{up} = 0.075$, $\delta_{low} = 0.3$

Observed T_e **Profile Shapes Insensitive to P_{NBI}**, T_i **More Sensitive**

- 26 cases analyzed with ONETWO, TGLF runs performed using XPTOR
- Avg temperature divided by pedestal temperature (ρ=0.84) recorded using experimentally analyzed profiles
- TGLF reproduces observed trends
- Caveat: Experimental temperatures at ρ=0.84 increased with NBI despite low triangularity
 - 55% increase in T_e
 - − 75% increase in T_i as P_{NB}=2.8 → 9.4 MW

a/L_T Remains the Same with NBI Power Within Inner 1/3 of Plasma, Some Systematic Changes in the Region 0.35 < ρ < 0.75

- Inside ρ=0.3, both a/L_{Te} and a/L_{Ti} show very little change as NBI power increased from 2.8 to 9.4 MW
- In the range ρ =0.3-0.75, a/L_{Te} decreases with NBI while a/L_{Ti} increases with NBI

* Experimental a/Lt values

TGLF Shows Good Agreement with Measured Temperature Profiles for 26 Discharges with Various NBI Powers

- RMS errors in T_e, T_i used to quantify the level of agreement
 - Errors comparable to results obtained from larger database
- Large errors in core T_i often observed due to overpredicted levels of neoclassical transport

TGLF Modeling Shows No Discernable Change in the Energy Transport as NBI is Increased, ETG Modes Dominate χ_e

- Inside ρ =0.4, ETG dominates χ_e and neoclassical dominates χ_i
- ETG modes contributing more than 50% to χ_e beyond $\rho=0.4$

113-11/JEK/rs

J.E. Kinsey/APS/November 2011

Summary

- A key ingredient in the TGLF predictions for ITER is profile stiffness
 - Q=P_{fus}/P_{aux} scales like P^{-0.8}_{aux} at fixed β_{ped} and P_{fus} scales like $\beta_{ped,N}^2$
- TGLF predicts that ITER has a composite core stiffness that is comparable to DIII-D & JET H-mode discharges
- Global DIII-D H-mode data appears to show evidence of stiffness
 - Recent JET experiments also appear stiff (Versloot NF2011, Mantica PRL2009)
- DIII-D power scans show that core T_e and T_i profiles are insensitive to a factor of 3 change in NBI power, not clear if this is evidence of stiffness
 - <T> / T₈₄ independent of NBI power for electrons, scales approximately like $P^{0.15}$ for ions
 - Even with low δ , temperatures at pedestal BC location increased with NBI: 55% increase in T_e and 75% increase in T_i at ρ =0.84 as P_{NB}=2.8 \rightarrow 9.4 MW
 - TGLF modeling of 26 discharges in power scans shows good agreement with temperature profiles, little change in χ 's as NBI power is increased
 - RMS errors = 10-13% which is comparable to results from larger database
 - ETG modes contribute to more than 50% of χ_e

Future Work — A Database of Nonlinear GYRO Simulations is Being Created to Verify TGLF for ITER-Relevant Near-Threshold Parameters

- TGLF and TGYRO/GYRO simulations of ITER show that the profiles reside very close to threshold due to large profile stiffness
- Most of the GYRO simulations used to verify TGLF were far above threshold
- Coupled ITG-TEM-ETG simulations with realistic mass ratios are being performed

- Previous GYRO simulations had $k_{\theta}\rho_s \leq 0.75$, new cases have $k_{\theta}\rho_s \leq 2.4$

