Off-axis Neutral Beam Current Drive Experiments in DIII-D

by J.M. Park¹ with M. Murakami¹, C.C. Petty², W.W. Heidbrink³, M.A. Van Zeeland², J.R. Ferron², T.H. Osborne², R. Prater², C.T. Holcomb⁴, D.C. Pace⁵

¹Oak Ridge National Laboratory
 ²General Atomics
 ³University of California, Irvine
 ⁴Lawrence Livermore National Laboratory
 ⁵Oak Ridge Institute for Science Education

Presented at the 53rd Annual Meeting of the APS Division of Plasma Physics, Salt Lake City, Utah

November 14-18, 2011

Off-axis NBCD Enables Advanced Scenario Development

- Previous attempts to develop steady state, high performance scenario with high q_{min} at high β have been limited by overdrive of the central current from the NBI required for heating
- Off-axis NBCD is expected to provide most of CD needed at half radius for noninductive high β scenario with flat q(ρ) > 2
- Focus of off-axis NBCD experiment
 - Confirm in experiments that new off-axis beams drive current as expected

Off-axis NBCD Profile Measured in H-mode Discharge

- Use AT target configuration
 - H-mode
 - DND plasma shape
 - +B_T for good NBCD efficiency (Better alignment of NBI to local B)
- Avoid significant core MHD
- Add balance NBI on top of off-axis NBCD beams

Detailed NBCD Measurement Compares Two Discharges for On- and Off-axis NBI at Same Plasma Conductivity

NATIONAL FUSION FACILIT SAN DIEGO On-axis Off-axis $8 \cdot 10^5$ $6 \cdot 10^5$ $4 \cdot 10^5$ $2 \cdot 10^5$ 0 0.0 0.2 0.4 0.6 0.81.0

 Adjust on-axis beam power to match T_e and n_e

r/a

→ Difference in NBCD results in change of current profile evolution

Change Observed in Magnetic Pitch Angles for On- and Off-axis NBCD

• Direct MSE analysis

→ Clear evidence of off-axis NBCD

Time Evolution of MSE Signals is Consistent with Predicted Off-axis NBCD

NATIONAL FUSION FACILIT

- MSE signals compared with transport simulation using realistic current drive sources
 - ONETWO/EFIT/NUBEAM MSE simulator
- Red: with NBCD
- Blue: without NBCD

NBCD is Obtained Quantitatively from Evolution of the Equilibria

- Kinetic equilibria reconstruction using magnetic pitch angles from MSE \Rightarrow J_{Tot}
- Internal loop voltage from time series of equilibria reconstruction $\Rightarrow J_{OH} = \sigma_{neo} \quad \frac{\partial \psi}{\partial t}$
- Bootstrap current from neoclassical theory $\Rightarrow J_{BS}$

$$\left(\mathbf{J}_{\mathsf{N}\mathsf{B}} = \mathbf{J}_{\mathsf{Tot}} - \mathbf{J}_{\mathsf{OH}} - \mathbf{J}_{\mathsf{BS}} \right)$$

Experimental Difference between On- and Off-axis NBCD Profiles in Good Agreement with Classical Model

 Differential CD analysis compares two discharges with on– and off–NBI at ~ same T_e and n_e

Reduce systematic sources of error (model dependency and uncertainties in measurement, e.g. Z_{eff})

• Modeling comparison

- NUBEAM Monte-Carlo beam ion slowing down calculation
- Assume no anomalous fast ion diffusion

Experiments Confirm that New Off-axis Beams Drive Current as Expected

- Clear hollow NBCD profile
- Peak NBCD at ρ ~ 0.4
- Reasonable agreement with NUBEAM modeling
- Analysis is in progress for a range of beam injection and discharge conditions
 - \pm B_T, E_b, injection power, β , and T_e (E_b/T_e)

Beam Stored Energy Calculated by Classical Model Consistent with Equilibrium Reconstruction

Summary

- Experiments on off-axis NBCD in DIII-D have clearly demonstrated off-axis NBCD using the new tilted beamline
- The MSE magnetic pitch angles show clear evidence of off-axis current drive when compared with the on-axis injection
- The beam-stored energy estimated by equilibrium reconstruction is consistent with the classical model calculation, indicating no large anomalous losses of NBCD and fast ions
- Good agreement of the local NBCD profile was found between experiment and modeling
- Off-axis NBCD is ready to use for AT scenario
 C. Holcomb, "High q_{min} Steady-State Scenario
 Development Using Off-Axis Neutral Beam Injection on DIII-D"

